
-
Previous Article
Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds
- ERA-MS Home
- This Volume
- Next Article
Zermelo deformation of finsler metrics by killing vector fields
1. | Centre International de Rencontres Mathématiques-CIRM, 163 avenue de Luminy, Case 916, F-13288 Marseille -Cedex 9, France |
2. | Institut für Mathematik, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany |
We show how geodesics, Jacobi vector fields, and flag curvature of a Finsler metric behave under Zermelo deformation with respect to a Killing vector field. We also show that Zermelo deformation with respect to a Killing vector field of a locally symmetric Finsler metric is also locally symmetric.
References:
[1] |
D. Bao, C. Robles and Z. Shen,
Zermelo Navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435.
doi: 10.4310/jdg/1098137838. |
[2] |
S. -S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. |
[3] |
P. Foulon, Ziller-Katok deformations of Finsler metrics, in 2004 International Symposium on Finsler Geometry, Tianjin, PRC, 2004, 22-24. |
[4] |
P. Foulon,
Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1127-1132.
doi: 10.1016/S0764-4442(97)87899-8. |
[5] |
L. Huang and X. Mo,
On the flag curvature of a class of Finsler metrics produced by the navigation problem, Pac. J. Math., 277 (2015), 149-168.
doi: 10.2140/pjm.2015.277.149. |
[6] |
M. A. Javaloyes and H. Vitório, Zermelo navigation in pseudo-Finsler metrics, preprint, arXiv: 1412.0465. |
[7] |
A. B. Katok, Ergodic properties of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR. Ser. Mat., 37 (1973), 539-576; English translation in Math. USSR-Isv. 7 (1973), 535-571. |
[8] |
V. S. Matveev and M. Troyanov,
The Binet-Legendre metric in Finsler geometry, Geom. Topol., 16 (2012), 2135-2170.
doi: 10.2140/gt.2012.16.2135. |
[9] |
Z. Shen, Finsler manifolds of constant positive curvature, in Finsler Geometry (Seattle, WA, 1995), Contemporary Math., 196, Amer. Math. Soc., Providence, RI, 1996, 83-93. |
[10] |
Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001. |
show all references
References:
[1] |
D. Bao, C. Robles and Z. Shen,
Zermelo Navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435.
doi: 10.4310/jdg/1098137838. |
[2] |
S. -S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. |
[3] |
P. Foulon, Ziller-Katok deformations of Finsler metrics, in 2004 International Symposium on Finsler Geometry, Tianjin, PRC, 2004, 22-24. |
[4] |
P. Foulon,
Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1127-1132.
doi: 10.1016/S0764-4442(97)87899-8. |
[5] |
L. Huang and X. Mo,
On the flag curvature of a class of Finsler metrics produced by the navigation problem, Pac. J. Math., 277 (2015), 149-168.
doi: 10.2140/pjm.2015.277.149. |
[6] |
M. A. Javaloyes and H. Vitório, Zermelo navigation in pseudo-Finsler metrics, preprint, arXiv: 1412.0465. |
[7] |
A. B. Katok, Ergodic properties of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR. Ser. Mat., 37 (1973), 539-576; English translation in Math. USSR-Isv. 7 (1973), 535-571. |
[8] |
V. S. Matveev and M. Troyanov,
The Binet-Legendre metric in Finsler geometry, Geom. Topol., 16 (2012), 2135-2170.
doi: 10.2140/gt.2012.16.2135. |
[9] |
Z. Shen, Finsler manifolds of constant positive curvature, in Finsler Geometry (Seattle, WA, 1995), Contemporary Math., 196, Amer. Math. Soc., Providence, RI, 1996, 83-93. |
[10] |
Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001. |

[1] |
Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257 |
[2] |
Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 |
[3] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[4] |
Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623 |
[5] |
Hitoshi Ishii, Taiga Kumagai. Averaging of Hamilton-Jacobi equations along divergence-free vector fields. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1519-1542. doi: 10.3934/dcds.2020329 |
[6] |
BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85 |
[7] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4943-4957. doi: 10.3934/dcds.2021063 |
[8] |
Venkateswaran P. Krishnan, Vladimir A. Sharafutdinov. Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas. Inverse Problems and Imaging, 2022, 16 (4) : 787-826. doi: 10.3934/ipi.2021076 |
[9] |
Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031 |
[10] |
Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165 |
[11] |
José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020 |
[12] |
Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387 |
[13] |
Jorge Sotomayor, Michail Zhitomirskii. On pairs of foliations defined by vector fields in the plane. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 741-749. doi: 10.3934/dcds.2000.6.741 |
[14] |
Benedetto Piccoli, Francesco Rossi. Measure dynamics with Probability Vector Fields and sources. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6207-6230. doi: 10.3934/dcds.2019270 |
[15] |
Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure and Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725 |
[16] |
Jaume Llibre, Marco Antonio Teixeira. Regularization of discontinuous vector fields in dimension three. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 235-241. doi: 10.3934/dcds.1997.3.235 |
[17] |
Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763 |
[18] |
Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247 |
[19] |
Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073 |
[20] |
Patrick Bonckaert, P. De Maesschalck. Gevrey and analytic local models for families of vector fields. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 377-400. doi: 10.3934/dcdsb.2008.10.377 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]