
-
Previous Article
Signatures, sums of hermitian squares and positive cones on algebras with involution
- ERA-MS Home
- This Volume
-
Next Article
Zermelo deformation of finsler metrics by killing vector fields
Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds
Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran |
We consider a discrete dynamical system on a pseudo-Riemannian manifold and we determine the concept of a hyperbolic set for it. We insert a condition in the definition of a hyperbolic set which implies to the unique decomposition of a part of tangent space (at each point of this set) to two unstable and stable subspaces with exponentially increasing and exponentially decreasing dynamics on them. We prove the continuity of this decomposition via the metric created by a torsion-free pseudo-Riemannian connection. We present a global attractor for a diffeomorphism on an open submanifold of the hyperbolic space $H^2(1)$ which is not a hyperbolic set for it.
References:
[1] |
V. M. Alekseev and M. Yakobson,
Symbolic dynamics and hyperbolic dynamical systems, Phys. Rep., 75 (1981), 287-325.
doi: 10.1016/0370-1573(81)90186-1. |
[2] |
V. Araujo and M. Viana, Hyperbolic dynamical systems, in Mathematics of Complexity and Dynamical Systems, Vols. 13, Springer, New York, 2012, 740-754. |
[3] |
C. Bona and J. Massó,
Hyperbolic evolution system for numerical relativity, Phys. Rev. Lett., 68 (1992), 1097-1099.
doi: 10.1103/PhysRevLett.68.1097. |
[4] |
Y. Choquet-Bruhat and T. Ruggeri,
Hyperbolicity of the 3+1 system of Einstein equations, Commun. Math. Phys., 89 (1983), 269-275.
doi: 10.1007/BF01211832. |
[5] |
A. Gogolev,
Bootstrap for local rigidity of Anosov automorphisms on the 3-torus, Commun. Math. Phys., 352 (2017), 439-455.
doi: 10.1007/s00220-017-2863-4. |
[6] |
J. S. Hadamard, Sur l'it$\acute{e}ration$ et les solutions asymptotiques des équations différentielles, Bulletin de la Société Mathématique de France, 29 (1901), 224-228. Google Scholar |
[7] |
B. Hasselblatt, Hyperbolic dynamical systems, in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, 239-319.
doi: 10.1016/S1874-575X(02)80005-4. |
[8] |
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. |
[9] |
A. Mukherjee, Differential Topology, Springer International Publishing AG Switzerland, 2015
doi: 10.1007/978-3-319-19045-7. |
[10] |
J. Palis Jr and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York-Berlin, 1982.
![]() |
[11] |
J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. |
[12] |
H. Poincaré, Sur le probléme des trois corps et les equations de la dynamique, Acta Mathematica, 13 (1890), 1-270. Google Scholar |
[13] |
C. Ragazzo and L. S. Ruiz,
Dynamics of an isolated, viscoelastic, self-gravitating body, Celestial Mech. Dynam. Astronom., 122 (2015), 303-332.
doi: 10.1007/s10569-015-9620-9. |
[14] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[15] |
R. Yang and J. Qi,
Dynamics of generalized tachyon field, Eur. Phys. J. C, 72 (2012), 2095.
doi: 10.1140/epjc/s10052-012-2095-x. |
show all references
References:
[1] |
V. M. Alekseev and M. Yakobson,
Symbolic dynamics and hyperbolic dynamical systems, Phys. Rep., 75 (1981), 287-325.
doi: 10.1016/0370-1573(81)90186-1. |
[2] |
V. Araujo and M. Viana, Hyperbolic dynamical systems, in Mathematics of Complexity and Dynamical Systems, Vols. 13, Springer, New York, 2012, 740-754. |
[3] |
C. Bona and J. Massó,
Hyperbolic evolution system for numerical relativity, Phys. Rev. Lett., 68 (1992), 1097-1099.
doi: 10.1103/PhysRevLett.68.1097. |
[4] |
Y. Choquet-Bruhat and T. Ruggeri,
Hyperbolicity of the 3+1 system of Einstein equations, Commun. Math. Phys., 89 (1983), 269-275.
doi: 10.1007/BF01211832. |
[5] |
A. Gogolev,
Bootstrap for local rigidity of Anosov automorphisms on the 3-torus, Commun. Math. Phys., 352 (2017), 439-455.
doi: 10.1007/s00220-017-2863-4. |
[6] |
J. S. Hadamard, Sur l'it$\acute{e}ration$ et les solutions asymptotiques des équations différentielles, Bulletin de la Société Mathématique de France, 29 (1901), 224-228. Google Scholar |
[7] |
B. Hasselblatt, Hyperbolic dynamical systems, in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, 239-319.
doi: 10.1016/S1874-575X(02)80005-4. |
[8] |
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. |
[9] |
A. Mukherjee, Differential Topology, Springer International Publishing AG Switzerland, 2015
doi: 10.1007/978-3-319-19045-7. |
[10] |
J. Palis Jr and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York-Berlin, 1982.
![]() |
[11] |
J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. |
[12] |
H. Poincaré, Sur le probléme des trois corps et les equations de la dynamique, Acta Mathematica, 13 (1890), 1-270. Google Scholar |
[13] |
C. Ragazzo and L. S. Ruiz,
Dynamics of an isolated, viscoelastic, self-gravitating body, Celestial Mech. Dynam. Astronom., 122 (2015), 303-332.
doi: 10.1007/s10569-015-9620-9. |
[14] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[15] |
R. Yang and J. Qi,
Dynamics of generalized tachyon field, Eur. Phys. J. C, 72 (2012), 2095.
doi: 10.1140/epjc/s10052-012-2095-x. |
[1] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[2] |
M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403 |
[3] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[4] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[5] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[6] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[7] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
2019 Impact Factor: 0.5
Tools
Article outline
Figures and Tables
[Back to Top]