2018, 25: 16-26. doi: 10.3934/era.2018.25.003

Signatures, sums of hermitian squares and positive cones on algebras with involution

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

Received  October 23, 2017 Published  April 2018

We provide a coherent picture of our efforts thus far in extending real algebra and its links to the theory of quadratic forms over ordered fields in the noncommutative direction, using hermitian forms and "ordered" algebras with involution.

Citation: Vincent Astier, Thomas Unger. Signatures, sums of hermitian squares and positive cones on algebras with involution. Electronic Research Announcements, 2018, 25: 16-26. doi: 10.3934/era.2018.25.003
References:
[1]

A. A. Albert, Involutorial simple algebras and real Riemann matrices, Ann. of Math. (2), 36(1935), 886–964. doi: 10.2307/1968595.

[2]

E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115.  doi: 10.1007/BF02952513.

[3]

E. Artin and O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85-99.  doi: 10.1007/BF02952512.

[4]

V. Astier and T. Unger, Signatures of hermitian forms and the Knebusch trace formula, Math. Ann., 358 (2014), 925-947.  doi: 10.1007/s00208-013-0977-3.

[5]

V. Astier and T. Unger, Signatures of hermitian forms and "prime ideals" of Witt groups, Adv. Math., 285 (2015), 497-514.  doi: 10.1016/j.aim.2015.07.035.

[6]

V. Astier and T. Unger, Positive cones on algebras with involution, preprint, 2017, arXiv: 1609.06601.

[7]

V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, preprint, 2016, arXiv: 1511.06330.

[8]

V. Astier and T. Unger, Signatures, sums of hermitian squares and positive cones on algebras with involution, Séminaire de Structures Algébriques Ordonnées 2015–2016, 91 (2017).

[9]

V. Astier and T. Unger, Stability index of algebras with involution, Contemporary Mathematics, 697 (2017), 41-50.  doi: 10.1090/conm/697/14045.

[10]

A. AuelE. BrusselS. Garibaldi and U. Vishne, Open problems on central simple algebras, Transform. Groups, 16 (2011), 219-264.  doi: 10.1007/s00031-011-9119-8.

[11]

E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2), 147 (1998), 651–693. doi: 10.2307/120961.

[12]

J. Bochnak, M. Coste and M. -F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03718-8.

[13]

T. C. Craven, Orderings, valuations, and Hermitian forms over *-fields, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 2, American Mathematical Society, Providence, RI, (1995), 149–160.

[14]

T. C. Craven, Valuations and Hermitian forms on skew fields, in Valuation Theory and its Applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., 32, American Mathematical Society, Providence, RI, (2002), 103–115.

[15]

D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., (1900), 253-297. 

[16]

M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60.  doi: 10.1090/S0002-9947-1969-0251026-X.

[17]

I. Klep and T. Unger, The Procesi-Schacher conjecture and Hilbert's 17th problem for algebras with involution, J. Algebra, 324 (2010), 256-268.  doi: 10.1016/j.jalgebra.2010.03.022.

[18]

M. -A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-75401-2.

[19]

M. -A. Knus, A. Merkurjev, M. Rost and J. -P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. doi: 10.1090/coll/044.

[20]

T. Y. Lam, An introduction to real algebra, in Ordered Fields and real Algebraic Geometry (Boulder, Colo., 1983), Rocky Mountain J. Math., 14 (1984), 767–814. doi: 10.1216/RMJ-1984-14-4-767.

[21]

T. Y. Lam, Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005.

[22]

D. W. Lewis and J.-P. Tignol, On the signature of an involution, Arch. Math. (Basel), 60 (1993), 128-135.  doi: 10.1007/BF01199098.

[23]

D. W. Lewis and T. Unger, A local-global principle for algebras with involution and Hermitian forms, Math. Z., 244 (2003), 469-477.  doi: 10.1007/s00209-003-0490-6.

[24]

D. W. Lewis and T. Unger, Hermitian Morita theory: A matrix approach, Irish Math. Soc. Bull., 62 (2008), 37-41. 

[25]

F. Lorenz and J. Leicht, Die Primideale des Wittschen Ringes, Invent. Math., 10 (1970), 82-88.  doi: 10.1007/BF01402972.

[26]

A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math., 1 (1966), 116-132.  doi: 10.1007/BF01389724.

[27]

A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z., 133 (1973), 319-342.  doi: 10.1007/BF01177872.

[28]

A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0101548.

[29]

C. Procesi and M. Schacher, A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2), 104 (1976), 395–406. doi: 10.2307/1970962.

[30]

A. Quéguiner, Signature des involutions de deuxiéme espéce, Arch. Math. (Basel), 65 (1995), 408-412.  doi: 10.1007/BF01198071.

[31]

W. Scharlau, Induction theorems and the structure of the Witt group, Invent. Math., 11 (1970), 37-44.  doi: 10.1007/BF01389804.

[32]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, vol. 270, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-642-69971-9.

[33]

J. J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares, Philosophical Magazine, 4 (1852), 138-142.  doi: 10.1080/14786445208647087.

[34]

J. -P. Tignol, Algebras with involution and classical groups, in European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., vol. 169, Birkhäuser, Basel, (1998), 244–258.

[35]

A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.), 24 (1961), 589-623. 

show all references

References:
[1]

A. A. Albert, Involutorial simple algebras and real Riemann matrices, Ann. of Math. (2), 36(1935), 886–964. doi: 10.2307/1968595.

[2]

E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115.  doi: 10.1007/BF02952513.

[3]

E. Artin and O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85-99.  doi: 10.1007/BF02952512.

[4]

V. Astier and T. Unger, Signatures of hermitian forms and the Knebusch trace formula, Math. Ann., 358 (2014), 925-947.  doi: 10.1007/s00208-013-0977-3.

[5]

V. Astier and T. Unger, Signatures of hermitian forms and "prime ideals" of Witt groups, Adv. Math., 285 (2015), 497-514.  doi: 10.1016/j.aim.2015.07.035.

[6]

V. Astier and T. Unger, Positive cones on algebras with involution, preprint, 2017, arXiv: 1609.06601.

[7]

V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, preprint, 2016, arXiv: 1511.06330.

[8]

V. Astier and T. Unger, Signatures, sums of hermitian squares and positive cones on algebras with involution, Séminaire de Structures Algébriques Ordonnées 2015–2016, 91 (2017).

[9]

V. Astier and T. Unger, Stability index of algebras with involution, Contemporary Mathematics, 697 (2017), 41-50.  doi: 10.1090/conm/697/14045.

[10]

A. AuelE. BrusselS. Garibaldi and U. Vishne, Open problems on central simple algebras, Transform. Groups, 16 (2011), 219-264.  doi: 10.1007/s00031-011-9119-8.

[11]

E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2), 147 (1998), 651–693. doi: 10.2307/120961.

[12]

J. Bochnak, M. Coste and M. -F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03718-8.

[13]

T. C. Craven, Orderings, valuations, and Hermitian forms over *-fields, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 2, American Mathematical Society, Providence, RI, (1995), 149–160.

[14]

T. C. Craven, Valuations and Hermitian forms on skew fields, in Valuation Theory and its Applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., 32, American Mathematical Society, Providence, RI, (2002), 103–115.

[15]

D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., (1900), 253-297. 

[16]

M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60.  doi: 10.1090/S0002-9947-1969-0251026-X.

[17]

I. Klep and T. Unger, The Procesi-Schacher conjecture and Hilbert's 17th problem for algebras with involution, J. Algebra, 324 (2010), 256-268.  doi: 10.1016/j.jalgebra.2010.03.022.

[18]

M. -A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-75401-2.

[19]

M. -A. Knus, A. Merkurjev, M. Rost and J. -P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. doi: 10.1090/coll/044.

[20]

T. Y. Lam, An introduction to real algebra, in Ordered Fields and real Algebraic Geometry (Boulder, Colo., 1983), Rocky Mountain J. Math., 14 (1984), 767–814. doi: 10.1216/RMJ-1984-14-4-767.

[21]

T. Y. Lam, Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005.

[22]

D. W. Lewis and J.-P. Tignol, On the signature of an involution, Arch. Math. (Basel), 60 (1993), 128-135.  doi: 10.1007/BF01199098.

[23]

D. W. Lewis and T. Unger, A local-global principle for algebras with involution and Hermitian forms, Math. Z., 244 (2003), 469-477.  doi: 10.1007/s00209-003-0490-6.

[24]

D. W. Lewis and T. Unger, Hermitian Morita theory: A matrix approach, Irish Math. Soc. Bull., 62 (2008), 37-41. 

[25]

F. Lorenz and J. Leicht, Die Primideale des Wittschen Ringes, Invent. Math., 10 (1970), 82-88.  doi: 10.1007/BF01402972.

[26]

A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math., 1 (1966), 116-132.  doi: 10.1007/BF01389724.

[27]

A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z., 133 (1973), 319-342.  doi: 10.1007/BF01177872.

[28]

A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0101548.

[29]

C. Procesi and M. Schacher, A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2), 104 (1976), 395–406. doi: 10.2307/1970962.

[30]

A. Quéguiner, Signature des involutions de deuxiéme espéce, Arch. Math. (Basel), 65 (1995), 408-412.  doi: 10.1007/BF01198071.

[31]

W. Scharlau, Induction theorems and the structure of the Witt group, Invent. Math., 11 (1970), 37-44.  doi: 10.1007/BF01389804.

[32]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, vol. 270, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-642-69971-9.

[33]

J. J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares, Philosophical Magazine, 4 (1852), 138-142.  doi: 10.1080/14786445208647087.

[34]

J. -P. Tignol, Algebras with involution and classical groups, in European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., vol. 169, Birkhäuser, Basel, (1998), 244–258.

[35]

A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.), 24 (1961), 589-623. 

[1]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[2]

Yang Cao, Wei- Wei Tan, Mei-Qun Jiang. A generalization of the positive-definite and skew-Hermitian splitting iteration. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 811-821. doi: 10.3934/naco.2012.2.811

[3]

Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control and Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016

[4]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[5]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control and Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[6]

Ian Blake, V. Kumar Murty, Hamid Usefi. A note on diagonal and Hermitian hypersurfaces. Advances in Mathematics of Communications, 2016, 10 (4) : 753-764. doi: 10.3934/amc.2016039

[7]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[8]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[9]

Paul Breiding, Türkü Özlüm Çelik, Timothy Duff, Alexander Heaton, Aida Maraj, Anna-Laura Sattelberger, Lorenzo Venturello, Oǧuzhan Yürük. Nonlinear algebra and applications. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021045

[10]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29 (4) : 2673-2685. doi: 10.3934/era.2021008

[11]

Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002

[12]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[13]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[14]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365

[15]

Seung-Yeal Ha, Myeongju Kang, Hansol Park. Collective behaviors of the Lohe Hermitian sphere model with inertia. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2613-2641. doi: 10.3934/cpaa.2021046

[16]

Penka Georgieva, Aleksey Zinger. Real orientations, real Gromov-Witten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 87-99. doi: 10.3934/era.2017.24.010

[17]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[18]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

[19]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[20]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

2020 Impact Factor: 0.929

Article outline

[Back to Top]