In this work we study the Cosine Transform operator and the Sine Transform operator in the setting of Henstock-Kurzweil integration theory. We show that these related transformation operators have a very different behavior in the context of Henstock-Kurzweil functions. In fact, while one of them is a bounded operator, the other one is not. This is a generalization of a result of E. Liflyand in the setting of Lebesgue integration.
Citation: |
[1] |
R. G. Bartle, A Modern Theory of Integration, Graduate Studies in Mathematics, 32. American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/032.![]() ![]() ![]() |
[2] |
W. Beckner, Inequalities in Fourier analysis on $\mathbb{R}^n$, Proc. Nat. Acad. Sci., 72 (1975), 638-641.
doi: 10.1073/pnas.72.2.638.![]() ![]() ![]() |
[3] |
B. Bongiorno and T. V. Panchapagesan, On the Alexiewicz topology of the Denjoy space, Real Anal. Exchange, 21 (1995/96), 604–614.
![]() ![]() |
[4] |
H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, San Diego, CA, 1972.
![]() ![]() |
[5] |
T. H. Hildebrandt, Introduction to the Theory of Integration, Publisher Academic Press, New York, 1963.
![]() ![]() |
[6] |
G. Jameson, Sine, cosine and exponential integrals, The Mathematical Gazette, 99 (2015), 276-289.
doi: 10.1017/mag.2015.36.![]() ![]() ![]() |
[7] |
R. Kannan and C. K. Krueger, Advanced Analysis on the Real Line, Springer-Verlag, Harrisburg, VA, 1996.
![]() ![]() |
[8] |
E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI, 1997.
![]() ![]() |
[9] |
E. Liflyand, Integrability spaces for the Fourier transform of a function of bounded variation, Journal of Mathematical Analysis and Applications, 436 (2016), 1082-1101.
doi: 10.1016/j.jmaa.2015.12.042.![]() ![]() ![]() |
[10] |
F.J. Mendoza-Torres, On pointwise inversion of the Fourier transform of BV0 functions, Ann. Funct. Anal., 1 (2010), 112-120.
doi: 10.15352/afa/1399900593.![]() ![]() ![]() |
[11] |
F. J. Mendoza-Torres, M. G. Morales-Macías, J. A. Escamilla-Reyna and J. H. ArredondoRuiz, Several aspects around the Riemann-Lebesgue lemma, Journal of Advance Research in Pure Mathematics, 5 (2013), 33-46.
doi: 10.5373/jarpm.1458.052712.![]() ![]() ![]() |
[12] |
M.G. Morales-Macías and J. H. Arredondo-Ruiz, Factorization in the space of Henstock-Kurzweil integrable functions, Azerbaijan Journal of Mathematics, 7 (2017), 116-131.
![]() ![]() |
[13] |
M. G. Morales-Macías, J. H. Arredondo-Ruiz and F. J. Mendoza-Torres, An Extension of some properties for the Fourier transform operator on Lp($\mathbb{R}$) spaces, Revista de la Unión Matemática Argentina, 57 (2016), 85-94.
![]() ![]() |
[14] |
M. Reed and B. Simon, Methods of Modern Analysis, volume Ⅱ: Fourier Analysis, Self Adjointness, Academic Press, 1975.
![]() ![]() |
[15] |
M. Riesz and A. E. Livingston, A short proof of a classical theorem in the theory of Fourier integrals, Amer. Math. Montly, 62 (1955), 434-437.
doi: 10.2307/2307003.![]() ![]() ![]() |
[16] |
W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
![]() ![]() |
[17] |
E. Talvila, Henstock-Kurzweil Fourier transforms, Ilinois Journal of Mathematics, 46 (2002), 1207-1226.
![]() ![]() |
[18] |
M. Tvrdý, G. Antunes-Monteiro and A. Slavik, Kurzweil-Stieltjes Integral: Theory and Applications, Series in Real Analysis, World Scientific Publishing Co, Singapore, 2017.
![]() |