2018, 25: 60-71. doi: 10.3934/era.2018.25.007

A moment method for invariant ensembles

1. 

Department of Mathematics, Kagoshima University, Kagoshima, Japan

2. 

Department of Mathematics, University of California, San Diego, USA

Received  April 07, 2018 Revised  September 05, 2018 Published  December 2018

We introduce a new moment method in Random Matrix Theory specifically tailored to the spectral analysis of invariant ensembles. Our method produces a classification of invariant ensembles which exhibit a spectral Law of Large Numbers and yields an explicit description of the limiting eigenvalue distribution when it exists. We discuss the future development and applications of this new moment method.

Citation: Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007
References:
[1]

A. BorodinA. Bufetov and G. Olshanski, Limit shapes for growing extreme characters of $U(∞)$, Ann. Appl. Prob., 25 (2015), 2339-2381.  doi: 10.1214/14-AAP1050.  Google Scholar

[2]

A. Bufetov and V. Gorin, Representations of classical Lie groups and quantized free convolution, Geom. Funct. Anal., 25 (2015), 763-814.  doi: 10.1007/s00039-015-0323-x.  Google Scholar

[3]

H. CohhM. Larsen and J. Propp, The shape of a typical boxed plane partition, New York J. Math., 4 (1998), 137-165.   Google Scholar

[4]

B. Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Internat. Math. Res. Not., 17 (2003), 953-982.  doi: 10.1155/S107379280320917X.  Google Scholar

[5]

B. Collins, S. Matsumoto and J. Novak, An Invitation to the Weingarten Calculus, book in preparation. Google Scholar

[6]

B. Collins and P. Śniady, Integration with respect to Haar measure on the unitary, orthogonal and symplectic group, Comm. Math. Phys., 264 (2006), 773-795.  doi: 10.1007/s00220-006-1554-3.  Google Scholar

[7]

B. Conrey, Notes on L-functions and random matrix theory, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006,107-162.  Google Scholar

[8]

P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999.  Google Scholar

[9]

P. Deift and D. Goev, Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, 18, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2009. doi: 10.1090/cln/018.  Google Scholar

[10]

L. Erdos and H.-T. Yau, A Dynamical Approach to Random Matrix Theory Courant Lecture Notes in Mathematics, 28, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2017.  Google Scholar

[11]

P. J. Forrester, Log-Gases and Random Matrices, London Mathematical Society Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010. doi: 10.1515/9781400835416.  Google Scholar

[12]

A. Guionnet and M. Maïda, A Fourier view on the $R$-transform and related asymptotics of spherical integrals, J. Funct. Anal., 222 (2005), 435-490.  doi: 10.1016/j.jfa.2004.09.015.  Google Scholar

[13]

A. Jagannath and T. Trogdon, Random matrices and the New York City subway system, Phys. Rev. E, 96 (2017). doi: 10.1103/PhysRevE.96.030101.  Google Scholar

[14]

K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91 (1998), 151-204.  doi: 10.1215/S0012-7094-98-09108-6.  Google Scholar

[15]

K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys., 209 (2000), 437-476.  doi: 10.1007/s002200050027.  Google Scholar

[16]

R. Kenyon and A. Okounkov, Planar dimers and Harnack curves, Duke Math. J., 131 (2006), 499-524.  doi: 10.1215/S0012-7094-06-13134-4.  Google Scholar

[17]

R. Kenyon and A. Okounkov, Limit shapes and the complex Burgers equation, Acta Math., 199 (2007), 263-302.  doi: 10.1007/s11511-007-0021-0.  Google Scholar

[18]

R. KenyonA. Okounkov and S. Sheffield, Dimers and amoebae, Ann. Math. (2), 163 (2006), 1019-1056.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[19]

S. L. Lauritzen, Thiele: Pioneer in Statistics, Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780198509721.001.0001.  Google Scholar

[20]

V. A. Marčhenko and L. Pastur, Distribution of eigenvalues for some sets of random matrices, Mat. Sb. NS, 72 (1967), 507-536.   Google Scholar

[21]

S. Matsumoto and J. Novak, in preparation. Google Scholar

[22]

J. A. Mingo and R. Speicher, Free Probability and Random Matrices, Fields Institute Monographs 35, Springer, New York, 2017. doi: 10.1007/978-1-4939-6942-5.  Google Scholar

[23]

A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, 335, Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511735127.  Google Scholar

[24]

J. Novak and P. Śniady, What is... a free cumulant? Notices Amer. Math. Soc., 58 (2011), 300-301.  Google Scholar

[25]

J. Novak, Three lectures on free probability, with illustrations by M. LaCroix, in Random Matrix Theory, Interacting Particle Systems, and Integrable Systems, Math. Sci. Res. Inst. Publ., 65, Cambridge Univ. Press, New York, 2014,309-383.  Google Scholar

[26]

J. Novak, Lozenge tilings and Hurwitz numbers, J. Stat. Phys., 161 (2015), 509-517.  doi: 10.1007/s10955-015-1330-x.  Google Scholar

[27]

G. Olshanski and A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, in Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2,175, Adv. Math. Sci., 31, Amer. Math. Soc., Providence, RI, 1996,137-175. doi: 10.1090/trans2/175/09.  Google Scholar

[28]

L. Petrov, Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Related Fields, 160 (2014), 429-487.  doi: 10.1007/s00440-013-0532-x.  Google Scholar

[29]

A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices, Comm. Math. Phys., 207 (1999), 697-733.  doi: 10.1007/s002200050743.  Google Scholar

[30]

D. V. Voiculescu, Limit laws for random matrices and free products, Invent. Math., 104 (1991), 201-220.  doi: 10.1007/BF01245072.  Google Scholar

[31]

D. V. Voiculescu, K. J. Dykema and A. Nica, Free random variables CRM Monograph Series, 1, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[32]

E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. (2), 62 (1955), 548-564.  doi: 10.2307/1970079.  Google Scholar

[33]

J. Wishart, The generalised product moment distribution in samples from a multivariate normal population, Biometrika, 20A (1928), 32-52.   Google Scholar

show all references

References:
[1]

A. BorodinA. Bufetov and G. Olshanski, Limit shapes for growing extreme characters of $U(∞)$, Ann. Appl. Prob., 25 (2015), 2339-2381.  doi: 10.1214/14-AAP1050.  Google Scholar

[2]

A. Bufetov and V. Gorin, Representations of classical Lie groups and quantized free convolution, Geom. Funct. Anal., 25 (2015), 763-814.  doi: 10.1007/s00039-015-0323-x.  Google Scholar

[3]

H. CohhM. Larsen and J. Propp, The shape of a typical boxed plane partition, New York J. Math., 4 (1998), 137-165.   Google Scholar

[4]

B. Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Internat. Math. Res. Not., 17 (2003), 953-982.  doi: 10.1155/S107379280320917X.  Google Scholar

[5]

B. Collins, S. Matsumoto and J. Novak, An Invitation to the Weingarten Calculus, book in preparation. Google Scholar

[6]

B. Collins and P. Śniady, Integration with respect to Haar measure on the unitary, orthogonal and symplectic group, Comm. Math. Phys., 264 (2006), 773-795.  doi: 10.1007/s00220-006-1554-3.  Google Scholar

[7]

B. Conrey, Notes on L-functions and random matrix theory, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006,107-162.  Google Scholar

[8]

P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999.  Google Scholar

[9]

P. Deift and D. Goev, Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, 18, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2009. doi: 10.1090/cln/018.  Google Scholar

[10]

L. Erdos and H.-T. Yau, A Dynamical Approach to Random Matrix Theory Courant Lecture Notes in Mathematics, 28, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2017.  Google Scholar

[11]

P. J. Forrester, Log-Gases and Random Matrices, London Mathematical Society Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010. doi: 10.1515/9781400835416.  Google Scholar

[12]

A. Guionnet and M. Maïda, A Fourier view on the $R$-transform and related asymptotics of spherical integrals, J. Funct. Anal., 222 (2005), 435-490.  doi: 10.1016/j.jfa.2004.09.015.  Google Scholar

[13]

A. Jagannath and T. Trogdon, Random matrices and the New York City subway system, Phys. Rev. E, 96 (2017). doi: 10.1103/PhysRevE.96.030101.  Google Scholar

[14]

K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91 (1998), 151-204.  doi: 10.1215/S0012-7094-98-09108-6.  Google Scholar

[15]

K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys., 209 (2000), 437-476.  doi: 10.1007/s002200050027.  Google Scholar

[16]

R. Kenyon and A. Okounkov, Planar dimers and Harnack curves, Duke Math. J., 131 (2006), 499-524.  doi: 10.1215/S0012-7094-06-13134-4.  Google Scholar

[17]

R. Kenyon and A. Okounkov, Limit shapes and the complex Burgers equation, Acta Math., 199 (2007), 263-302.  doi: 10.1007/s11511-007-0021-0.  Google Scholar

[18]

R. KenyonA. Okounkov and S. Sheffield, Dimers and amoebae, Ann. Math. (2), 163 (2006), 1019-1056.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[19]

S. L. Lauritzen, Thiele: Pioneer in Statistics, Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780198509721.001.0001.  Google Scholar

[20]

V. A. Marčhenko and L. Pastur, Distribution of eigenvalues for some sets of random matrices, Mat. Sb. NS, 72 (1967), 507-536.   Google Scholar

[21]

S. Matsumoto and J. Novak, in preparation. Google Scholar

[22]

J. A. Mingo and R. Speicher, Free Probability and Random Matrices, Fields Institute Monographs 35, Springer, New York, 2017. doi: 10.1007/978-1-4939-6942-5.  Google Scholar

[23]

A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, 335, Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511735127.  Google Scholar

[24]

J. Novak and P. Śniady, What is... a free cumulant? Notices Amer. Math. Soc., 58 (2011), 300-301.  Google Scholar

[25]

J. Novak, Three lectures on free probability, with illustrations by M. LaCroix, in Random Matrix Theory, Interacting Particle Systems, and Integrable Systems, Math. Sci. Res. Inst. Publ., 65, Cambridge Univ. Press, New York, 2014,309-383.  Google Scholar

[26]

J. Novak, Lozenge tilings and Hurwitz numbers, J. Stat. Phys., 161 (2015), 509-517.  doi: 10.1007/s10955-015-1330-x.  Google Scholar

[27]

G. Olshanski and A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, in Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2,175, Adv. Math. Sci., 31, Amer. Math. Soc., Providence, RI, 1996,137-175. doi: 10.1090/trans2/175/09.  Google Scholar

[28]

L. Petrov, Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Related Fields, 160 (2014), 429-487.  doi: 10.1007/s00440-013-0532-x.  Google Scholar

[29]

A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices, Comm. Math. Phys., 207 (1999), 697-733.  doi: 10.1007/s002200050743.  Google Scholar

[30]

D. V. Voiculescu, Limit laws for random matrices and free products, Invent. Math., 104 (1991), 201-220.  doi: 10.1007/BF01245072.  Google Scholar

[31]

D. V. Voiculescu, K. J. Dykema and A. Nica, Free random variables CRM Monograph Series, 1, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[32]

E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. (2), 62 (1955), 548-564.  doi: 10.2307/1970079.  Google Scholar

[33]

J. Wishart, The generalised product moment distribution in samples from a multivariate normal population, Biometrika, 20A (1928), 32-52.   Google Scholar

Figure 1.  A lozenge tiling of a sawtooth domain of rank 6.
[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[3]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[8]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[9]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[10]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (103)
  • HTML views (820)
  • Cited by (0)

Other articles
by authors

[Back to Top]