2018, 25: 72-86. doi: 10.3934/era.2018.25.008

Characterization of Log-convex decay in non-selfadjoint dynamics

Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark

Received  June 29, 2018 Published  December 2018

Fund Project: Supported by the Danish Research Council, Natural Sciences grant no. 4181-00042.

The short-time and global behavior are studied for an autonomous linear evolution equation, which is defined by a generator inducing a uniformly bounded holomorphic semigroup in a Hilbert space. A general necessary and sufficient condition is introduced under which the norm of the solution is shown to be a log-convex and strictly decreasing function of time, and differentiable also at the initial time with a derivative controlled by the lower bound of the generator, which moreover is shown to be positively accretive. Injectivity of holomorphic semigroups is the main technical tool.

Citation: Jon Johnsen. Characterization of Log-convex decay in non-selfadjoint dynamics. Electronic Research Announcements, 2018, 25: 72-86. doi: 10.3934/era.2018.25.008
References:
[1]

A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36. doi: 10.3390/axioms7020031.  Google Scholar

[2]

A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305. doi: 10.1016/j.crma.2018.01.019.  Google Scholar

[3]

G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009.  Google Scholar

[4]

B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013.  Google Scholar

[5]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985. Google Scholar

[6]

J. Janas, On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994), 75-82.  doi: 10.4064/sm-112-1-75-82.  Google Scholar

[7]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[8]

S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972.  Google Scholar

[9]

C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), 3-49.  doi: 10.1137/S00361445024180.  Google Scholar

[10]

C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006. doi: 10.1007/0-387-31077-0.  Google Scholar

[11]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[12]

G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1007-8.  Google Scholar

[13]

L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[14]

J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[15]

L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966.  Google Scholar

[16]

R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.  doi: 10.1016/0022-247X(74)90008-0.  Google Scholar

[17]

L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.  Google Scholar

show all references

References:
[1]

A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36. doi: 10.3390/axioms7020031.  Google Scholar

[2]

A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305. doi: 10.1016/j.crma.2018.01.019.  Google Scholar

[3]

G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009.  Google Scholar

[4]

B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013.  Google Scholar

[5]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985. Google Scholar

[6]

J. Janas, On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994), 75-82.  doi: 10.4064/sm-112-1-75-82.  Google Scholar

[7]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[8]

S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972.  Google Scholar

[9]

C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), 3-49.  doi: 10.1137/S00361445024180.  Google Scholar

[10]

C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006. doi: 10.1007/0-387-31077-0.  Google Scholar

[11]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[12]

G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1007-8.  Google Scholar

[13]

L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[14]

J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[15]

L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966.  Google Scholar

[16]

R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.  doi: 10.1016/0022-247X(74)90008-0.  Google Scholar

[17]

L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.  Google Scholar

[1]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[2]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[3]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[4]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[5]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[6]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[7]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

[10]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[12]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[13]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[14]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[15]

Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021003

[16]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[18]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[19]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[20]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (93)
  • HTML views (779)
  • Cited by (0)

Other articles
by authors

[Back to Top]