\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterization of Log-convex decay in non-selfadjoint dynamics

Supported by the Danish Research Council, Natural Sciences grant no. 4181-00042

Abstract Full Text(HTML) Related Papers Cited by
  • The short-time and global behavior are studied for an autonomous linear evolution equation, which is defined by a generator inducing a uniformly bounded holomorphic semigroup in a Hilbert space. A general necessary and sufficient condition is introduced under which the norm of the solution is shown to be a log-convex and strictly decreasing function of time, and differentiable also at the initial time with a derivative controlled by the lower bound of the generator, which moreover is shown to be positively accretive. Injectivity of holomorphic semigroups is the main technical tool.

    Mathematics Subject Classification: Primary: 35E15; Secondary: 47D06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36. doi: 10.3390/axioms7020031.
      A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305. doi: 10.1016/j.crma.2018.01.019.
      G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009.
      B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013.
      L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985.
      J. Janas , On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994) , 75-82.  doi: 10.4064/sm-112-1-75-82.
      T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
      S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972.
      C. Moler  and  C. Van Loan , Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003) , 3-49.  doi: 10.1137/S00361445024180.
      C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006. doi: 10.1007/0-387-31077-0.
      A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
      G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1007-8.
      L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.
      J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.
      L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966.
      R. E. Showalter , The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974) , 563-572.  doi: 10.1016/0022-247X(74)90008-0.
      L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
  • 加载中
SHARE

Article Metrics

HTML views(1921) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return