-
Previous Article
On the embeddings of the Riemann sphere with nonnegative normal bundles
- ERA-MS Home
- This Volume
-
Next Article
A moment method for invariant ensembles
Characterization of Log-convex decay in non-selfadjoint dynamics
Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark |
The short-time and global behavior are studied for an autonomous linear evolution equation, which is defined by a generator inducing a uniformly bounded holomorphic semigroup in a Hilbert space. A general necessary and sufficient condition is introduced under which the norm of the solution is shown to be a log-convex and strictly decreasing function of time, and differentiable also at the initial time with a derivative controlled by the lower bound of the generator, which moreover is shown to be positively accretive. Injectivity of holomorphic semigroups is the main technical tool.
References:
[1] |
A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36.
doi: 10.3390/axioms7020031. |
[2] |
A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305.
doi: 10.1016/j.crma.2018.01.019. |
[3] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009. |
[4] |
B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013. |
[5] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985. Google Scholar |
[6] |
J. Janas,
On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994), 75-82.
doi: 10.4064/sm-112-1-75-82. |
[7] |
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[8] |
S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972. |
[9] |
C. Moler and C. Van Loan,
Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), 3-49.
doi: 10.1137/S00361445024180. |
[10] |
C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006.
doi: 10.1007/0-387-31077-0. |
[11] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[12] |
G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1007-8. |
[13] |
L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[14] |
J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[15] |
L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[16] |
R. E. Showalter,
The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0. |
[17] |
L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005. |
show all references
References:
[1] |
A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36.
doi: 10.3390/axioms7020031. |
[2] |
A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305.
doi: 10.1016/j.crma.2018.01.019. |
[3] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009. |
[4] |
B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013. |
[5] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985. Google Scholar |
[6] |
J. Janas,
On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994), 75-82.
doi: 10.4064/sm-112-1-75-82. |
[7] |
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[8] |
S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972. |
[9] |
C. Moler and C. Van Loan,
Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), 3-49.
doi: 10.1137/S00361445024180. |
[10] |
C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006.
doi: 10.1007/0-387-31077-0. |
[11] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[12] |
G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1007-8. |
[13] |
L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[14] |
J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[15] |
L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[16] |
R. E. Showalter,
The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0. |
[17] |
L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005. |
[1] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[2] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[3] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[4] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[5] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[6] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[7] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[8] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[9] |
Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021010 |
[10] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[11] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[12] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[13] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[14] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288 |
[15] |
Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021003 |
[16] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[17] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[18] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[19] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[20] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]