The short-time and global behavior are studied for an autonomous linear evolution equation, which is defined by a generator inducing a uniformly bounded holomorphic semigroup in a Hilbert space. A general necessary and sufficient condition is introduced under which the norm of the solution is shown to be a log-convex and strictly decreasing function of time, and differentiable also at the initial time with a derivative controlled by the lower bound of the generator, which moreover is shown to be positively accretive. Injectivity of holomorphic semigroups is the main technical tool.
Citation: |
A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36.
doi: 10.3390/axioms7020031.![]() ![]() |
|
A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305.
doi: 10.1016/j.crma.2018.01.019.![]() ![]() ![]() |
|
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009.
![]() ![]() |
|
B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013.
![]() ![]() |
|
L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985.
![]() |
|
J. Janas
, On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994)
, 75-82.
doi: 10.4064/sm-112-1-75-82.![]() ![]() ![]() |
|
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
![]() ![]() |
|
S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972.
![]() ![]() |
|
C. Moler
and C. Van Loan
, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003)
, 3-49.
doi: 10.1137/S00361445024180.![]() ![]() ![]() |
|
C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006.
doi: 10.1007/0-387-31077-0.![]() ![]() ![]() |
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
|
G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1007-8.![]() ![]() ![]() |
|
L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8.![]() ![]() ![]() |
|
J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0953-9.![]() ![]() ![]() |
|
L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966.
![]() ![]() |
|
R. E. Showalter
, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974)
, 563-572.
doi: 10.1016/0022-247X(74)90008-0.![]() ![]() ![]() |
|
L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
![]() ![]() |