-
Previous Article
Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows
- ERA-MS Home
- This Volume
- Next Article
Cluster algebras with Grassmann variables
1. | CNRS, Laboratoire de Mathématiques U.F.R. Sciences Exactes et Naturelles Moulin de la Housse - BP 1039 51687 REIMS cedex 2, France |
2. | Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA |
We develop a version of cluster algebra extending the ring of Laurent polynomials by adding Grassmann variables. These algebras can be described in terms of "extended quivers," which are oriented hypergraphs. We describe mutations of such objects and define a corresponding commutative superalgebra. Our construction includes the notion of weighted quivers that has already appeared in different contexts. This paper is a step towards understanding the notion of cluster superalgebra.
References:
[1] |
H. S. M. Coxeter,
Frieze patterns, Acta Arith., 18 (1971), 297-310.
doi: 10.4064/aa-18-1-297-310. |
[2] |
J. A. Cruz Morales and S. Galkin, Upper bounds for mutations of potentials, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 005, 13 pp.
doi: 10.3842/SIGMA.2013.005. |
[3] |
S. Fomin and A. Zelevinsky,
Cluster algebras. Ⅰ. Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.
doi: 10.1090/S0894-0347-01-00385-X. |
[4] |
S. Fomin and A. Zelevinsky,
The Laurent phenomenon, Adv. in Appl. Math., 28 (2002), 119-144.
doi: 10.1006/aama.2001.0770. |
[5] |
A. Fordy and R. Marsh,
Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebraic Combin., 34 (2011), 19-66.
doi: 10.1007/s10801-010-0262-4. |
[6] |
S. Galkin and A. Usnich, Mutations of potentials, Preprint IPMU 10-0100, 2010. Google Scholar |
[7] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J., 127 (2005), 291-311; and Correction to "Cluster algebras and Weil-Petersson forms", Duke Math. J., 139 (2007), 407-409.
doi: 10.1215/S0012-7094-07-13925-5. |
[8] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry, Amer. Math. Soc., Providence, RI, 2010.
doi: 10.1090/surv/167. |
[9] |
M. Gross, P. Hacking and S. Keel,
Birational geometry of cluster algebras, Algebr. Geom., 2 (2015), 137-175.
doi: 10.14231/AG-2015-007. |
[10] |
I. Ip, R. Penner and A. Zeitlin,
$N = 2$ super-Teichmüller theory, Adv. Math., 336 (2018), 409-454.
doi: 10.1016/j.aim.2018.08.001. |
[11] |
R. Marsh, Lecture Notes on Cluster Algebras, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013. |
[12] |
L. Li, J. Mixco, B. Ransingh and A. Srivastava, An approach toward supersymmetric cluster algebras, arXiv: 1708.03851. Google Scholar |
[13] |
S. Morier-Genoud,
Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics, Bull. Lond. Math. Soc., 47 (2015), 895-938.
doi: 10.1112/blms/bdv070. |
[14] |
S. Morier-Genoud, V. Ovsienko, R. Schwartz and S. Tabachnikov, Linear difference equations, frieze patterns, and combinatorial Gale transform, Forum Math. Sigma, 2 (2014), e22, 45 pp.
doi: 10.1017/fms.2014.20. |
[15] |
S. Morier-Genoud, V. Ovsienko and S. Tabachnikov,
Introducing supersymmetric frieze patterns and linear difference operators, Math. Z., 281 (2015), 1061-1087.
doi: 10.1007/s00209-015-1520-x. |
[16] |
V. Ovsienko, A step towards cluster superalgebras, arXiv: 1503.01894. Google Scholar |
[17] |
V. Ovsienko and S. Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, Algebr. Represent. Theory, 21 (2018), 1119-1132.
doi: 10.1007/s10468-018-9779-3. |
[18] |
R. Penner and A. Zeitlin, Decorated super-Teichmüller space, arXiv: 1509.06302. Google Scholar |
[19] |
L. Williams,
Cluster algebras: An introduction, Bull. Amer. Math. Soc. (N.S.), 51 (2014), 1-26.
doi: 10.1090/S0273-0979-2013-01417-4. |
[20] |
E. Witten, Notes On Super Riemann Surfaces And Their Moduli, arXiv: 1209.2459. Google Scholar |
show all references
References:
[1] |
H. S. M. Coxeter,
Frieze patterns, Acta Arith., 18 (1971), 297-310.
doi: 10.4064/aa-18-1-297-310. |
[2] |
J. A. Cruz Morales and S. Galkin, Upper bounds for mutations of potentials, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 005, 13 pp.
doi: 10.3842/SIGMA.2013.005. |
[3] |
S. Fomin and A. Zelevinsky,
Cluster algebras. Ⅰ. Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.
doi: 10.1090/S0894-0347-01-00385-X. |
[4] |
S. Fomin and A. Zelevinsky,
The Laurent phenomenon, Adv. in Appl. Math., 28 (2002), 119-144.
doi: 10.1006/aama.2001.0770. |
[5] |
A. Fordy and R. Marsh,
Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebraic Combin., 34 (2011), 19-66.
doi: 10.1007/s10801-010-0262-4. |
[6] |
S. Galkin and A. Usnich, Mutations of potentials, Preprint IPMU 10-0100, 2010. Google Scholar |
[7] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J., 127 (2005), 291-311; and Correction to "Cluster algebras and Weil-Petersson forms", Duke Math. J., 139 (2007), 407-409.
doi: 10.1215/S0012-7094-07-13925-5. |
[8] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry, Amer. Math. Soc., Providence, RI, 2010.
doi: 10.1090/surv/167. |
[9] |
M. Gross, P. Hacking and S. Keel,
Birational geometry of cluster algebras, Algebr. Geom., 2 (2015), 137-175.
doi: 10.14231/AG-2015-007. |
[10] |
I. Ip, R. Penner and A. Zeitlin,
$N = 2$ super-Teichmüller theory, Adv. Math., 336 (2018), 409-454.
doi: 10.1016/j.aim.2018.08.001. |
[11] |
R. Marsh, Lecture Notes on Cluster Algebras, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013. |
[12] |
L. Li, J. Mixco, B. Ransingh and A. Srivastava, An approach toward supersymmetric cluster algebras, arXiv: 1708.03851. Google Scholar |
[13] |
S. Morier-Genoud,
Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics, Bull. Lond. Math. Soc., 47 (2015), 895-938.
doi: 10.1112/blms/bdv070. |
[14] |
S. Morier-Genoud, V. Ovsienko, R. Schwartz and S. Tabachnikov, Linear difference equations, frieze patterns, and combinatorial Gale transform, Forum Math. Sigma, 2 (2014), e22, 45 pp.
doi: 10.1017/fms.2014.20. |
[15] |
S. Morier-Genoud, V. Ovsienko and S. Tabachnikov,
Introducing supersymmetric frieze patterns and linear difference operators, Math. Z., 281 (2015), 1061-1087.
doi: 10.1007/s00209-015-1520-x. |
[16] |
V. Ovsienko, A step towards cluster superalgebras, arXiv: 1503.01894. Google Scholar |
[17] |
V. Ovsienko and S. Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, Algebr. Represent. Theory, 21 (2018), 1119-1132.
doi: 10.1007/s10468-018-9779-3. |
[18] |
R. Penner and A. Zeitlin, Decorated super-Teichmüller space, arXiv: 1509.06302. Google Scholar |
[19] |
L. Williams,
Cluster algebras: An introduction, Bull. Amer. Math. Soc. (N.S.), 51 (2014), 1-26.
doi: 10.1090/S0273-0979-2013-01417-4. |
[20] |
E. Witten, Notes On Super Riemann Surfaces And Their Moduli, arXiv: 1209.2459. Google Scholar |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]