We derive, from the work of M. Ratner on joinings of time-changes of horocycle flows and from the result of the authors on its cohomology, the property of orthogonality of powers for non-trivial smooth time-changes of horocycle flows on compact quotients. Such a property is known to imply P. Sarnak's Möbius orthogonality conjecture, already known for horocycle flows by the work of J. Bourgain, P. Sarnak and T. Ziegler.
Citation: |
[1] |
J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83.
doi: 10.1007/978-1-4614-4075-8_5.![]() ![]() ![]() |
[2] |
A. Bufetov and G. Forni, Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 851-903.
doi: 10.24033/asens.2229.![]() ![]() ![]() |
[3] |
D. Dolgopyat and O. Sarig, Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), 680-713.
doi: 10.1007/s10955-016-1689-3.![]() ![]() ![]() |
[4] |
E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.
doi: 10.1016/j.jfa.2013.09.005.![]() ![]() ![]() |
[5] |
L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8.![]() ![]() ![]() |
[6] |
A. Kanigowski, M. Lemańczyk, and C. Ulcigrai, On disjointness properties of some parabolic flows, arXiv: 1810.11576, preprint.
![]() |
[7] |
M. Ratner, Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.
doi: 10.1007/BF01388912.![]() ![]() ![]() |
[8] |
P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/paper/512, Mathematics - Number Theory, 11N37, 2011.
![]() |