2019, 26: 16-23. doi: 10.3934/era.2019.26.002

Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows

1. 

Département de Mathématiques, Université de Lille, Cité Scientifique, Villeneuve, D'Ascq, Cedex 9655, FR

2. 

Department of Mathematics, University of Maryland, 4176 Campus Drive, College Park, MD 20742-4015, USA

Received  November 06, 2018 Revised  January 25, 2019 Published  March 2019

Fund Project: The first author is partially supported by the Labex CEMPI. The second author is supported by NSF grant DMS 1600687.

We derive, from the work of M. Ratner on joinings of time-changes of horocycle flows and from the result of the authors on its cohomology, the property of orthogonality of powers for non-trivial smooth time-changes of horocycle flows on compact quotients. Such a property is known to imply P. Sarnak's Möbius orthogonality conjecture, already known for horocycle flows by the work of J. Bourgain, P. Sarnak and T. Ziegler.

Citation: Livio Flaminio, Giovanni Forni. Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows. Electronic Research Announcements, 2019, 26: 16-23. doi: 10.3934/era.2019.26.002
References:
[1]

J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83. doi: 10.1007/978-1-4614-4075-8_5.  Google Scholar

[2]

A. Bufetov and G. Forni, Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 851-903.  doi: 10.24033/asens.2229.  Google Scholar

[3]

D. Dolgopyat and O. Sarig, Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), 680-713.  doi: 10.1007/s10955-016-1689-3.  Google Scholar

[4]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.  doi: 10.1016/j.jfa.2013.09.005.  Google Scholar

[5]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.  doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[6]

A. Kanigowski, M. Lemańczyk, and C. Ulcigrai, On disjointness properties of some parabolic flows, arXiv: 1810.11576, preprint. Google Scholar

[7]

M. Ratner, Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.  doi: 10.1007/BF01388912.  Google Scholar

[8]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/paper/512, Mathematics - Number Theory, 11N37, 2011. Google Scholar

show all references

References:
[1]

J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83. doi: 10.1007/978-1-4614-4075-8_5.  Google Scholar

[2]

A. Bufetov and G. Forni, Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 851-903.  doi: 10.24033/asens.2229.  Google Scholar

[3]

D. Dolgopyat and O. Sarig, Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), 680-713.  doi: 10.1007/s10955-016-1689-3.  Google Scholar

[4]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.  doi: 10.1016/j.jfa.2013.09.005.  Google Scholar

[5]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.  doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[6]

A. Kanigowski, M. Lemańczyk, and C. Ulcigrai, On disjointness properties of some parabolic flows, arXiv: 1810.11576, preprint. Google Scholar

[7]

M. Ratner, Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.  doi: 10.1007/BF01388912.  Google Scholar

[8]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/paper/512, Mathematics - Number Theory, 11N37, 2011. Google Scholar

[1]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 0.5

Article outline

[Back to Top]