
-
Previous Article
On higher-order anisotropic perturbed Caginalp phase field systems
- ERA-MS Home
- This Volume
-
Next Article
Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows
Fractal Weyl bounds and Hecke triangle groups
1. | Laboratoire de Mathématiques D'avignon, Université d'Avignon, 301 rue Baruch de Spinoza, 84916 Avignon Cedex, France |
2. | University of Bremen, Department 3 - Mathematics, Bibliothekstr. 5, 28359 Bremen, Germany |
3. | Institute for Mathematics, University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany |
Let $ \Gamma_w $ be a non-cofinite Hecke triangle group with cusp width $ w>2 $ and let $ \varrho\colon\Gamma_w\to U(V) $ be a finite-dimensional unitary representation of $ \Gamma_w $. In this note we announce a new fractal upper bound for the Selberg zeta function of $ \Gamma_w $ twisted by $ \varrho $. In strips parallel to the imaginary axis and bounded away from the real axis, the Selberg zeta function is bounded by $ \exp\left( C_{\varepsilon} \vert s\vert^{\delta + \varepsilon} \right) $, where $ \delta = \delta_w $ denotes the Hausdorff dimension of the limit set of $ \Gamma_w. $ This bound implies fractal Weyl bounds on the resonances of the Laplacian for any geometrically finite surface $ X = \widetilde{\Gamma}\backslash \mathbb{H}^2 $ whose fundamental group $ \widetilde{\Gamma} $ is a finite index, torsion-free subgroup of $ \Gamma_w $.
References:
[1] |
T. Apostol, On the Lerch zeta function, Pacific J. Math., (1951), 161–167.
doi: 10.2140/pjm.1951.1.161. |
[2] |
O. Bandtlow and O. Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math., 218 (2008), 902–925.
doi: 10.1016/j.aim.2008.02.005. |
[3] |
D. Borthwick, C. Judge and P. Perry, Selberg's zeta function and the spectral geometry of geometrically finite hyperbolic surfaces, Comment. Math. Helv., 80 (2005), 483–515.
doi: 10.4171/CMH/23. |
[4] |
C. Chang and D. Mayer, An extension of the thermodynamic formalism approach to Selberg's zeta function for general modular groups, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, 2001,523–562. |
[5] |
K. Datchev and S. Dyatlov, Fractal Weyl laws for asymptotically hyperbolic manifolds, Geom. Funct. Anal., 23 (2013), 1145–1206.
doi: 10.1007/s00039-013-0225-8. |
[6] |
S. Dyatlov, Improved fractal Weyl bounds for hyperbolic manifolds, To appear in JEMS. Google Scholar |
[7] |
S. Dyatlov and M. Zworski, Fractal Uncertainty for Transfer Operators , International Mathematics Research Notices, 2018.
doi: 10.1093/imrn/rny026. |
[8] |
F. Faure and M. Tsuiji, Fractal Weyl law for the Ruelle spectrum of Anosov flows, arXiv: 1706.09307. Google Scholar |
[9] |
K. Fedosova and A. Pohl, Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, arXiv: 1709.00760. Google Scholar |
[10] |
D. Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. Éc. Norm. Supér. (4), 19 (1986), 491–517.
doi: 10.24033/asens.1515. |
[11] |
D. Fried, Symbolic dynamics for triangle groups, Invent. Math., 125 (1996), 487–521.
doi: 10.1007/s002220050084. |
[12] |
L. Guillopé, K. Lin and M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Commun. Math. Phys., 245 (2004), 149–176.
doi: 10.1007/s00220-003-1007-1. |
[13] |
L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. (2), 145 (1997), 597–660.
doi: 10.2307/2951846. |
[14] |
E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichungen, Math. Ann., 112 (1936), 664–699.
doi: 10.1007/BF01565437. |
[15] |
D. Jakobson and F. Naud, On the critical line of convex co-compact hyperbolic surfaces, Geom. Funct. Anal., 22 (2012), 352–368.
doi: 10.1007/s00039-012-0154-y. |
[16] |
D. Jakobson and F. Naud, Resonances and density bounds for convex co-compact congruence subgroups of $SL_2(\Bbb{Z})$, Israel J. Math., 213 (2016), 443–473.
doi: 10.1007/s11856-016-1332-7. |
[17] |
M. Katsurada, On an asymptotic formula of Ramanujan for a certain theta-type series, Acta Arith., 97 (2001), 157–172.
doi: 10.4064/aa97-2-4. |
[18] |
P. Lax and R. Phillips, Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces. I, Comm. Pure Appl. Math., 37 (1984), 303–328.
doi: 10.1002/cpa.3160370304. |
[19] |
W. Lu, S. Sridhar and M. Zworski, Fractal Weyl laws for chaotic open systems, Phys. Rev. Lett., 91 (2003), 154101.
doi: 10.1103/PhysRevLett.91.154101. |
[20] |
Y. Manin and M. Marcolli, Continued fractions, modular symbols, and noncommutative geometry, Sel. Math., New Ser., 8 (2002), 475–521.
doi: 10.1007/s00029-002-8113-3. |
[21] |
D. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys., 130 (1990), 311–333.
doi: 10.1007/BF02473355. |
[22] |
D. Mayer, The thermodynamic formalism approach to Selberg's zeta function for $ \rm{PSL} $(2, Z), Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55–60.
doi: 10.1090/S0273-0979-1991-16023-4. |
[23] |
D. Mayer, T. Mühlenbruch and F. Strömberg, The transfer operator for the Hecke triangle groups, Discrete Contin. Dyn. Syst., Ser. A, 32 (2012), 2453–2484.
doi: 10.3934/dcds.2012.32.2453. |
[24] |
M. Möller and A. Pohl, Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory Dynam. Systems, 33 (2013), 247–283.
doi: 10.1017/S0143385711000794. |
[25] |
T. Morita, Markov systems and transfer operators associated with cofinite Fuchsian groups, Ergodic Theory Dynam. Systems, 17 (1997), 1147–1181.
doi: 10.1017/S014338579708632X. |
[26] |
F. Naud, Density and location of resonances for convex co-compact hyperbolic surfaces, Invent. Math., 195 (2014), 723–750.
doi: 10.1007/s00222-013-0463-2. |
[27] |
S. Nonnenmacher, J. Sjöstrand and M. Zworski, Fractal Weyl law for open quantum chaotic maps, Ann. of Math. (2), 179 (2014), 179–251.
doi: 10.4007/annals.2014.179.1.3. |
[28] |
S. Nonnenmacher and M. Zworski, Fractal Weyl laws in discrete models of chaotic scattering, J. Phys. A, 38 (2005), 10683–10702. |
[29] |
S. Patterson and P. Perry, The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein, Duke Math. J., 106 (2001), 321–390.
doi: 10.1215/S0012-7094-01-10624-8. |
[30] |
A. Pohl, A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area, Commun. Math. Phys., 337 (2015), 103–126.
doi: 10.1007/s00220-015-2304-1. |
[31] |
A. Pohl, Symbolic dynamics, automorphic functions, and Selberg zeta functions with unitary representations, Contemp. Math., 669 (2016), 205–236.
doi: 10.1090/conm/669/13430. |
[32] |
M. Pollicott, Some applications of thermodynamic formalism to manifolds with constant negative curvature, Adv. in Math., 85 (1991), 161–192.
doi: 10.1016/0001-8708(91)90054-B. |
[33] |
D. Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231–242.
doi: 10.1007/BF01403069. |
[34] |
E. Seiler and B. Simon, An inequality among determinants, Proc. Nat. Acad. Sci. USA, 72 (1975), 3277–3278.
doi: 10.1073/pnas.72.9.3277. |
[35] |
J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J., 60 (1990), 1–57.
doi: 10.1215/S0012-7094-90-06001-6. |
[36] |
J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J., 137 (2007), 381–459.
doi: 10.1215/S0012-7094-07-13731-1. |
[37] |
B. Stratmann and M. Urbański, The box-counting dimension for geometrically finite Kleinian groups, Fundam. Math., 149 (1996), 83–93. |
[38] |
A. Venkov, Spectral theory of automorphic functions, Proc. Steklov Inst. Math., 153 (1982); A translation of Trudy Mat. Inst. Steklov., 153 (1981), 172pp. |
[39] |
A. Venkov and P. Zograf, On analogues of the Artin factorization formulas in the spectral theory of automorphic functions connected with induced representations of Fuchsian groups, Math. USSR, Izv., 21 (1983), 435-443. Google Scholar |
[40] |
M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, Invent. Math., 136 (1999), 353–409.
doi: 10.1007/s002220050313. |
show all references
References:
[1] |
T. Apostol, On the Lerch zeta function, Pacific J. Math., (1951), 161–167.
doi: 10.2140/pjm.1951.1.161. |
[2] |
O. Bandtlow and O. Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math., 218 (2008), 902–925.
doi: 10.1016/j.aim.2008.02.005. |
[3] |
D. Borthwick, C. Judge and P. Perry, Selberg's zeta function and the spectral geometry of geometrically finite hyperbolic surfaces, Comment. Math. Helv., 80 (2005), 483–515.
doi: 10.4171/CMH/23. |
[4] |
C. Chang and D. Mayer, An extension of the thermodynamic formalism approach to Selberg's zeta function for general modular groups, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, 2001,523–562. |
[5] |
K. Datchev and S. Dyatlov, Fractal Weyl laws for asymptotically hyperbolic manifolds, Geom. Funct. Anal., 23 (2013), 1145–1206.
doi: 10.1007/s00039-013-0225-8. |
[6] |
S. Dyatlov, Improved fractal Weyl bounds for hyperbolic manifolds, To appear in JEMS. Google Scholar |
[7] |
S. Dyatlov and M. Zworski, Fractal Uncertainty for Transfer Operators , International Mathematics Research Notices, 2018.
doi: 10.1093/imrn/rny026. |
[8] |
F. Faure and M. Tsuiji, Fractal Weyl law for the Ruelle spectrum of Anosov flows, arXiv: 1706.09307. Google Scholar |
[9] |
K. Fedosova and A. Pohl, Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, arXiv: 1709.00760. Google Scholar |
[10] |
D. Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. Éc. Norm. Supér. (4), 19 (1986), 491–517.
doi: 10.24033/asens.1515. |
[11] |
D. Fried, Symbolic dynamics for triangle groups, Invent. Math., 125 (1996), 487–521.
doi: 10.1007/s002220050084. |
[12] |
L. Guillopé, K. Lin and M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Commun. Math. Phys., 245 (2004), 149–176.
doi: 10.1007/s00220-003-1007-1. |
[13] |
L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. (2), 145 (1997), 597–660.
doi: 10.2307/2951846. |
[14] |
E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichungen, Math. Ann., 112 (1936), 664–699.
doi: 10.1007/BF01565437. |
[15] |
D. Jakobson and F. Naud, On the critical line of convex co-compact hyperbolic surfaces, Geom. Funct. Anal., 22 (2012), 352–368.
doi: 10.1007/s00039-012-0154-y. |
[16] |
D. Jakobson and F. Naud, Resonances and density bounds for convex co-compact congruence subgroups of $SL_2(\Bbb{Z})$, Israel J. Math., 213 (2016), 443–473.
doi: 10.1007/s11856-016-1332-7. |
[17] |
M. Katsurada, On an asymptotic formula of Ramanujan for a certain theta-type series, Acta Arith., 97 (2001), 157–172.
doi: 10.4064/aa97-2-4. |
[18] |
P. Lax and R. Phillips, Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces. I, Comm. Pure Appl. Math., 37 (1984), 303–328.
doi: 10.1002/cpa.3160370304. |
[19] |
W. Lu, S. Sridhar and M. Zworski, Fractal Weyl laws for chaotic open systems, Phys. Rev. Lett., 91 (2003), 154101.
doi: 10.1103/PhysRevLett.91.154101. |
[20] |
Y. Manin and M. Marcolli, Continued fractions, modular symbols, and noncommutative geometry, Sel. Math., New Ser., 8 (2002), 475–521.
doi: 10.1007/s00029-002-8113-3. |
[21] |
D. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys., 130 (1990), 311–333.
doi: 10.1007/BF02473355. |
[22] |
D. Mayer, The thermodynamic formalism approach to Selberg's zeta function for $ \rm{PSL} $(2, Z), Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55–60.
doi: 10.1090/S0273-0979-1991-16023-4. |
[23] |
D. Mayer, T. Mühlenbruch and F. Strömberg, The transfer operator for the Hecke triangle groups, Discrete Contin. Dyn. Syst., Ser. A, 32 (2012), 2453–2484.
doi: 10.3934/dcds.2012.32.2453. |
[24] |
M. Möller and A. Pohl, Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory Dynam. Systems, 33 (2013), 247–283.
doi: 10.1017/S0143385711000794. |
[25] |
T. Morita, Markov systems and transfer operators associated with cofinite Fuchsian groups, Ergodic Theory Dynam. Systems, 17 (1997), 1147–1181.
doi: 10.1017/S014338579708632X. |
[26] |
F. Naud, Density and location of resonances for convex co-compact hyperbolic surfaces, Invent. Math., 195 (2014), 723–750.
doi: 10.1007/s00222-013-0463-2. |
[27] |
S. Nonnenmacher, J. Sjöstrand and M. Zworski, Fractal Weyl law for open quantum chaotic maps, Ann. of Math. (2), 179 (2014), 179–251.
doi: 10.4007/annals.2014.179.1.3. |
[28] |
S. Nonnenmacher and M. Zworski, Fractal Weyl laws in discrete models of chaotic scattering, J. Phys. A, 38 (2005), 10683–10702. |
[29] |
S. Patterson and P. Perry, The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein, Duke Math. J., 106 (2001), 321–390.
doi: 10.1215/S0012-7094-01-10624-8. |
[30] |
A. Pohl, A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area, Commun. Math. Phys., 337 (2015), 103–126.
doi: 10.1007/s00220-015-2304-1. |
[31] |
A. Pohl, Symbolic dynamics, automorphic functions, and Selberg zeta functions with unitary representations, Contemp. Math., 669 (2016), 205–236.
doi: 10.1090/conm/669/13430. |
[32] |
M. Pollicott, Some applications of thermodynamic formalism to manifolds with constant negative curvature, Adv. in Math., 85 (1991), 161–192.
doi: 10.1016/0001-8708(91)90054-B. |
[33] |
D. Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231–242.
doi: 10.1007/BF01403069. |
[34] |
E. Seiler and B. Simon, An inequality among determinants, Proc. Nat. Acad. Sci. USA, 72 (1975), 3277–3278.
doi: 10.1073/pnas.72.9.3277. |
[35] |
J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J., 60 (1990), 1–57.
doi: 10.1215/S0012-7094-90-06001-6. |
[36] |
J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J., 137 (2007), 381–459.
doi: 10.1215/S0012-7094-07-13731-1. |
[37] |
B. Stratmann and M. Urbański, The box-counting dimension for geometrically finite Kleinian groups, Fundam. Math., 149 (1996), 83–93. |
[38] |
A. Venkov, Spectral theory of automorphic functions, Proc. Steklov Inst. Math., 153 (1982); A translation of Trudy Mat. Inst. Steklov., 153 (1981), 172pp. |
[39] |
A. Venkov and P. Zograf, On analogues of the Artin factorization formulas in the spectral theory of automorphic functions connected with induced representations of Fuchsian groups, Math. USSR, Izv., 21 (1983), 435-443. Google Scholar |
[40] |
M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, Invent. Math., 136 (1999), 353–409.
doi: 10.1007/s002220050313. |
[1] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[2] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[3] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[4] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[5] |
Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204 |
[6] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[7] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[8] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[9] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[10] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[11] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[12] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[13] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
2019 Impact Factor: 0.5
Tools
Article outline
Figures and Tables
[Back to Top]