-
Previous Article
Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems
- ERA-MS Home
- This Volume
-
Next Article
Fractal Weyl bounds and Hecke triangle groups
On higher-order anisotropic perturbed Caginalp phase field systems
Faculté des Sciences et Techniques, Université Marien Ngouabi, B.P 69, Brazzaville, Congo |
Our aim in this paper is to study the existence and uniqueness of solution for hyperbolic relaxations of higher-order anisotropic Caginalp phase field systems with homogeous Dirichlet boundary conditions with regular potentials.
References:
[1] |
S. Agmon, Lectures on Elliptic Boundary Value Problems, princeton, 1965. |
[2] |
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Com. on Pure and Appl. Math., 12 (1959), 623–727.
doi: 10.1002/cpa.3160120405. |
[3] |
S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, Journal of Evolution Equations, 1 (2001), 69–84.
doi: 10.1007/PL00001365. |
[4] |
S. Aizicovici, E. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Mathematical Methods in the Applied Sciences, 24 (2001), 277–287.
doi: 10.1002/mma.215. |
[5] |
D. Brochet, D. Hilhorst, A. Novick-Cohen, et al., Maximal attractor and inertial sets for a conserved phase field model, Advances in Differential Equations, 1 (1996), 547–578. |
[6] |
G. Caginalp, An analysis of a phase field model of a free boundary, Archive for Rational Mechanics and Analysis, 92 (1986), 205–245.
doi: 10.1007/BF00254827. |
[7] |
G. Caginalp, Conserved-phase field system, Implications for Kinetic Undercooling. Physical, Review B, 38 (1988), 789. Google Scholar |
[8] |
G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, hele-shaw, and cahn-hilliard models as asymptotic limits, IMA Journal of Applied Mathematics, 44 (1990), 77–94.
doi: 10.1093/imamat/44.1.77. |
[9] |
G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete and Continuous Dynamical Systems-S, 4 (2011), 311–350.
doi: 10.3934/dcdss.2011.4.311. |
[10] |
J. W. Cahn and J. E. Hilliard,
Free energy of a nonuniform system, i. interfacial free energy, The Journal of Chemical Physics, 28 (1958), 258-267.
doi: 10.1002/9781118788295.ch4. |
[11] |
P. J. Chen and M. E. Gurtin,
On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik und Physik (ZAMP), 19 (1968), 614-627.
doi: 10.1007/BF01594969. |
[12] |
X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Archive for Rational Mechanics and Analysis, 202 (2011), 349–372.
doi: 10.1007/s00205-011-0429-8. |
[13] |
L. Cherfils and A. Miranville, On the caginalp system with dynamic boundary conditions and singular potentials, Applications of Mathematics, 54 (2009), 89–115.
doi: 10.1007/s10492-009-0008-6. |
[14] |
G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, Journal of Statistical Physics, 87 (1997), 37–61.
doi: 10.1007/BF02181479. |
[15] |
G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions Ⅱ: Interface motion, SIAM Journal on Applied Mathematics, 58 (1998), 1707–1729.
doi: 10.1137/S0036139996313046. |
[16] |
M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2743–2783.
doi: 10.1142/S0218202514500365. |
[17] |
R. Kobayashi,
Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, 63 (1993), 410-423.
doi: 10.1016/0167-2789(93)90120-P. |
[18] |
C. Laurence, A. Miranville and S. Peng, Higher-order models in phase separation, Journal of Applied Analysis and Computation, 7 (2017), 39–56. |
[19] |
A. Miranville, Some mathematical models in phase transition, Discrete and Continuous Dynamical Systems-S, 7 (2014), 271–306.
doi: 10.3934/dcdss.2014.7.271. |
[20] |
A. Miranville, Higher-order anisotropic caginalp phase-field systems, Mediterranean Journal of Mathematics, 13 (2016), 4519–4535.
doi: 10.1007/s00009-016-0760-2. |
[21] |
A. Miranville, On higher-order anisotropic conservative caginalp phase-field systems, Applied Mathematics and Optimization, 77 (2018), 297–314.
doi: 10.1007/s00245-016-9375-z. |
[22] |
A. Miranville and R. Quintanilla, A Caginalp phase field system based on type Ⅲ heat conduction with two temperatures, Quarterly of Applied Mathematics, 74 (2016), 375–398.
doi: 10.1090/qam/1430. |
[23] |
A. J. Ntsokongo, On higher-order anisotropic caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput, 7 (2017), 992–1012. |
[24] |
R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269. Google Scholar |
[25] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
show all references
References:
[1] |
S. Agmon, Lectures on Elliptic Boundary Value Problems, princeton, 1965. |
[2] |
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Com. on Pure and Appl. Math., 12 (1959), 623–727.
doi: 10.1002/cpa.3160120405. |
[3] |
S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, Journal of Evolution Equations, 1 (2001), 69–84.
doi: 10.1007/PL00001365. |
[4] |
S. Aizicovici, E. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Mathematical Methods in the Applied Sciences, 24 (2001), 277–287.
doi: 10.1002/mma.215. |
[5] |
D. Brochet, D. Hilhorst, A. Novick-Cohen, et al., Maximal attractor and inertial sets for a conserved phase field model, Advances in Differential Equations, 1 (1996), 547–578. |
[6] |
G. Caginalp, An analysis of a phase field model of a free boundary, Archive for Rational Mechanics and Analysis, 92 (1986), 205–245.
doi: 10.1007/BF00254827. |
[7] |
G. Caginalp, Conserved-phase field system, Implications for Kinetic Undercooling. Physical, Review B, 38 (1988), 789. Google Scholar |
[8] |
G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, hele-shaw, and cahn-hilliard models as asymptotic limits, IMA Journal of Applied Mathematics, 44 (1990), 77–94.
doi: 10.1093/imamat/44.1.77. |
[9] |
G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete and Continuous Dynamical Systems-S, 4 (2011), 311–350.
doi: 10.3934/dcdss.2011.4.311. |
[10] |
J. W. Cahn and J. E. Hilliard,
Free energy of a nonuniform system, i. interfacial free energy, The Journal of Chemical Physics, 28 (1958), 258-267.
doi: 10.1002/9781118788295.ch4. |
[11] |
P. J. Chen and M. E. Gurtin,
On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik und Physik (ZAMP), 19 (1968), 614-627.
doi: 10.1007/BF01594969. |
[12] |
X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Archive for Rational Mechanics and Analysis, 202 (2011), 349–372.
doi: 10.1007/s00205-011-0429-8. |
[13] |
L. Cherfils and A. Miranville, On the caginalp system with dynamic boundary conditions and singular potentials, Applications of Mathematics, 54 (2009), 89–115.
doi: 10.1007/s10492-009-0008-6. |
[14] |
G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, Journal of Statistical Physics, 87 (1997), 37–61.
doi: 10.1007/BF02181479. |
[15] |
G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions Ⅱ: Interface motion, SIAM Journal on Applied Mathematics, 58 (1998), 1707–1729.
doi: 10.1137/S0036139996313046. |
[16] |
M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2743–2783.
doi: 10.1142/S0218202514500365. |
[17] |
R. Kobayashi,
Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, 63 (1993), 410-423.
doi: 10.1016/0167-2789(93)90120-P. |
[18] |
C. Laurence, A. Miranville and S. Peng, Higher-order models in phase separation, Journal of Applied Analysis and Computation, 7 (2017), 39–56. |
[19] |
A. Miranville, Some mathematical models in phase transition, Discrete and Continuous Dynamical Systems-S, 7 (2014), 271–306.
doi: 10.3934/dcdss.2014.7.271. |
[20] |
A. Miranville, Higher-order anisotropic caginalp phase-field systems, Mediterranean Journal of Mathematics, 13 (2016), 4519–4535.
doi: 10.1007/s00009-016-0760-2. |
[21] |
A. Miranville, On higher-order anisotropic conservative caginalp phase-field systems, Applied Mathematics and Optimization, 77 (2018), 297–314.
doi: 10.1007/s00245-016-9375-z. |
[22] |
A. Miranville and R. Quintanilla, A Caginalp phase field system based on type Ⅲ heat conduction with two temperatures, Quarterly of Applied Mathematics, 74 (2016), 375–398.
doi: 10.1090/qam/1430. |
[23] |
A. J. Ntsokongo, On higher-order anisotropic caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput, 7 (2017), 992–1012. |
[24] |
R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269. Google Scholar |
[25] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[3] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[4] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[5] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[6] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[7] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[8] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[9] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[10] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[11] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[12] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[13] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[14] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[15] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[16] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[17] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[18] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[19] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[20] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]