2019, 26: 36-53. doi: 10.3934/era.2019.26.004

On higher-order anisotropic perturbed Caginalp phase field systems

Faculté des Sciences et Techniques, Université Marien Ngouabi, B.P 69, Brazzaville, Congo

* Corresponding author: Clesh Deseskel Elion Ekohela

Received  March 2019 Revised  June 2019 Published  July 2019

Our aim in this paper is to study the existence and uniqueness of solution for hyperbolic relaxations of higher-order anisotropic Caginalp phase field systems with homogeous Dirichlet boundary conditions with regular potentials.

Citation: Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004
References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, princeton, 1965.  Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Com. on Pure and Appl. Math., 12 (1959), 623–727. doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, Journal of Evolution Equations, 1 (2001), 69–84. doi: 10.1007/PL00001365.  Google Scholar

[4]

S. Aizicovici, E. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Mathematical Methods in the Applied Sciences, 24 (2001), 277–287. doi: 10.1002/mma.215.  Google Scholar

[5]

D. Brochet, D. Hilhorst, A. Novick-Cohen, et al., Maximal attractor and inertial sets for a conserved phase field model, Advances in Differential Equations, 1 (1996), 547–578.  Google Scholar

[6]

G. Caginalp, An analysis of a phase field model of a free boundary, Archive for Rational Mechanics and Analysis, 92 (1986), 205–245. doi: 10.1007/BF00254827.  Google Scholar

[7]

G. Caginalp, Conserved-phase field system, Implications for Kinetic Undercooling. Physical, Review B, 38 (1988), 789. Google Scholar

[8]

G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, hele-shaw, and cahn-hilliard models as asymptotic limits, IMA Journal of Applied Mathematics, 44 (1990), 77–94. doi: 10.1093/imamat/44.1.77.  Google Scholar

[9]

G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete and Continuous Dynamical Systems-S, 4 (2011), 311–350. doi: 10.3934/dcdss.2011.4.311.  Google Scholar

[10]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, i. interfacial free energy, The Journal of Chemical Physics, 28 (1958), 258-267.  doi: 10.1002/9781118788295.ch4.  Google Scholar

[11]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik und Physik (ZAMP), 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[12]

X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Archive for Rational Mechanics and Analysis, 202 (2011), 349–372. doi: 10.1007/s00205-011-0429-8.  Google Scholar

[13]

L. Cherfils and A. Miranville, On the caginalp system with dynamic boundary conditions and singular potentials, Applications of Mathematics, 54 (2009), 89–115. doi: 10.1007/s10492-009-0008-6.  Google Scholar

[14]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, Journal of Statistical Physics, 87 (1997), 37–61. doi: 10.1007/BF02181479.  Google Scholar

[15]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions Ⅱ: Interface motion, SIAM Journal on Applied Mathematics, 58 (1998), 1707–1729. doi: 10.1137/S0036139996313046.  Google Scholar

[16]

M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2743–2783. doi: 10.1142/S0218202514500365.  Google Scholar

[17]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, 63 (1993), 410-423.  doi: 10.1016/0167-2789(93)90120-P.  Google Scholar

[18]

C. Laurence, A. Miranville and S. Peng, Higher-order models in phase separation, Journal of Applied Analysis and Computation, 7 (2017), 39–56.  Google Scholar

[19]

A. Miranville, Some mathematical models in phase transition, Discrete and Continuous Dynamical Systems-S, 7 (2014), 271–306. doi: 10.3934/dcdss.2014.7.271.  Google Scholar

[20]

A. Miranville, Higher-order anisotropic caginalp phase-field systems, Mediterranean Journal of Mathematics, 13 (2016), 4519–4535. doi: 10.1007/s00009-016-0760-2.  Google Scholar

[21]

A. Miranville, On higher-order anisotropic conservative caginalp phase-field systems, Applied Mathematics and Optimization, 77 (2018), 297–314. doi: 10.1007/s00245-016-9375-z.  Google Scholar

[22]

A. Miranville and R. Quintanilla, A Caginalp phase field system based on type Ⅲ heat conduction with two temperatures, Quarterly of Applied Mathematics, 74 (2016), 375–398. doi: 10.1090/qam/1430.  Google Scholar

[23]

A. J. Ntsokongo, On higher-order anisotropic caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput, 7 (2017), 992–1012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269.   Google Scholar

[25]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

show all references

References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, princeton, 1965.  Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Com. on Pure and Appl. Math., 12 (1959), 623–727. doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, Journal of Evolution Equations, 1 (2001), 69–84. doi: 10.1007/PL00001365.  Google Scholar

[4]

S. Aizicovici, E. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Mathematical Methods in the Applied Sciences, 24 (2001), 277–287. doi: 10.1002/mma.215.  Google Scholar

[5]

D. Brochet, D. Hilhorst, A. Novick-Cohen, et al., Maximal attractor and inertial sets for a conserved phase field model, Advances in Differential Equations, 1 (1996), 547–578.  Google Scholar

[6]

G. Caginalp, An analysis of a phase field model of a free boundary, Archive for Rational Mechanics and Analysis, 92 (1986), 205–245. doi: 10.1007/BF00254827.  Google Scholar

[7]

G. Caginalp, Conserved-phase field system, Implications for Kinetic Undercooling. Physical, Review B, 38 (1988), 789. Google Scholar

[8]

G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, hele-shaw, and cahn-hilliard models as asymptotic limits, IMA Journal of Applied Mathematics, 44 (1990), 77–94. doi: 10.1093/imamat/44.1.77.  Google Scholar

[9]

G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete and Continuous Dynamical Systems-S, 4 (2011), 311–350. doi: 10.3934/dcdss.2011.4.311.  Google Scholar

[10]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, i. interfacial free energy, The Journal of Chemical Physics, 28 (1958), 258-267.  doi: 10.1002/9781118788295.ch4.  Google Scholar

[11]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik und Physik (ZAMP), 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[12]

X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Archive for Rational Mechanics and Analysis, 202 (2011), 349–372. doi: 10.1007/s00205-011-0429-8.  Google Scholar

[13]

L. Cherfils and A. Miranville, On the caginalp system with dynamic boundary conditions and singular potentials, Applications of Mathematics, 54 (2009), 89–115. doi: 10.1007/s10492-009-0008-6.  Google Scholar

[14]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, Journal of Statistical Physics, 87 (1997), 37–61. doi: 10.1007/BF02181479.  Google Scholar

[15]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions Ⅱ: Interface motion, SIAM Journal on Applied Mathematics, 58 (1998), 1707–1729. doi: 10.1137/S0036139996313046.  Google Scholar

[16]

M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2743–2783. doi: 10.1142/S0218202514500365.  Google Scholar

[17]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, 63 (1993), 410-423.  doi: 10.1016/0167-2789(93)90120-P.  Google Scholar

[18]

C. Laurence, A. Miranville and S. Peng, Higher-order models in phase separation, Journal of Applied Analysis and Computation, 7 (2017), 39–56.  Google Scholar

[19]

A. Miranville, Some mathematical models in phase transition, Discrete and Continuous Dynamical Systems-S, 7 (2014), 271–306. doi: 10.3934/dcdss.2014.7.271.  Google Scholar

[20]

A. Miranville, Higher-order anisotropic caginalp phase-field systems, Mediterranean Journal of Mathematics, 13 (2016), 4519–4535. doi: 10.1007/s00009-016-0760-2.  Google Scholar

[21]

A. Miranville, On higher-order anisotropic conservative caginalp phase-field systems, Applied Mathematics and Optimization, 77 (2018), 297–314. doi: 10.1007/s00245-016-9375-z.  Google Scholar

[22]

A. Miranville and R. Quintanilla, A Caginalp phase field system based on type Ⅲ heat conduction with two temperatures, Quarterly of Applied Mathematics, 74 (2016), 375–398. doi: 10.1090/qam/1430.  Google Scholar

[23]

A. J. Ntsokongo, On higher-order anisotropic caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput, 7 (2017), 992–1012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269.   Google Scholar

[25]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[3]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[4]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[5]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[6]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[7]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[10]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[11]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[12]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[13]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[14]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[15]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[16]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[17]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[18]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[19]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[20]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (135)
  • HTML views (660)
  • Cited by (0)

Other articles
by authors

[Back to Top]