2019, 26: 36-53. doi: 10.3934/era.2019.26.004

On higher-order anisotropic perturbed Caginalp phase field systems

Faculté des Sciences et Techniques, Université Marien Ngouabi, B.P 69, Brazzaville, Congo

* Corresponding author: Clesh Deseskel Elion Ekohela

Received  March 2019 Revised  June 2019 Published  July 2019

Our aim in this paper is to study the existence and uniqueness of solution for hyperbolic relaxations of higher-order anisotropic Caginalp phase field systems with homogeous Dirichlet boundary conditions with regular potentials.

Citation: Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004
References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, princeton, 1965.  Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Com. on Pure and Appl. Math., 12 (1959), 623–727. doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, Journal of Evolution Equations, 1 (2001), 69–84. doi: 10.1007/PL00001365.  Google Scholar

[4]

S. Aizicovici, E. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Mathematical Methods in the Applied Sciences, 24 (2001), 277–287. doi: 10.1002/mma.215.  Google Scholar

[5]

D. Brochet, D. Hilhorst, A. Novick-Cohen, et al., Maximal attractor and inertial sets for a conserved phase field model, Advances in Differential Equations, 1 (1996), 547–578.  Google Scholar

[6]

G. Caginalp, An analysis of a phase field model of a free boundary, Archive for Rational Mechanics and Analysis, 92 (1986), 205–245. doi: 10.1007/BF00254827.  Google Scholar

[7]

G. Caginalp, Conserved-phase field system, Implications for Kinetic Undercooling. Physical, Review B, 38 (1988), 789. Google Scholar

[8]

G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, hele-shaw, and cahn-hilliard models as asymptotic limits, IMA Journal of Applied Mathematics, 44 (1990), 77–94. doi: 10.1093/imamat/44.1.77.  Google Scholar

[9]

G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete and Continuous Dynamical Systems-S, 4 (2011), 311–350. doi: 10.3934/dcdss.2011.4.311.  Google Scholar

[10]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, i. interfacial free energy, The Journal of Chemical Physics, 28 (1958), 258-267.  doi: 10.1002/9781118788295.ch4.  Google Scholar

[11]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik und Physik (ZAMP), 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[12]

X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Archive for Rational Mechanics and Analysis, 202 (2011), 349–372. doi: 10.1007/s00205-011-0429-8.  Google Scholar

[13]

L. Cherfils and A. Miranville, On the caginalp system with dynamic boundary conditions and singular potentials, Applications of Mathematics, 54 (2009), 89–115. doi: 10.1007/s10492-009-0008-6.  Google Scholar

[14]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, Journal of Statistical Physics, 87 (1997), 37–61. doi: 10.1007/BF02181479.  Google Scholar

[15]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions Ⅱ: Interface motion, SIAM Journal on Applied Mathematics, 58 (1998), 1707–1729. doi: 10.1137/S0036139996313046.  Google Scholar

[16]

M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2743–2783. doi: 10.1142/S0218202514500365.  Google Scholar

[17]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, 63 (1993), 410-423.  doi: 10.1016/0167-2789(93)90120-P.  Google Scholar

[18]

C. Laurence, A. Miranville and S. Peng, Higher-order models in phase separation, Journal of Applied Analysis and Computation, 7 (2017), 39–56.  Google Scholar

[19]

A. Miranville, Some mathematical models in phase transition, Discrete and Continuous Dynamical Systems-S, 7 (2014), 271–306. doi: 10.3934/dcdss.2014.7.271.  Google Scholar

[20]

A. Miranville, Higher-order anisotropic caginalp phase-field systems, Mediterranean Journal of Mathematics, 13 (2016), 4519–4535. doi: 10.1007/s00009-016-0760-2.  Google Scholar

[21]

A. Miranville, On higher-order anisotropic conservative caginalp phase-field systems, Applied Mathematics and Optimization, 77 (2018), 297–314. doi: 10.1007/s00245-016-9375-z.  Google Scholar

[22]

A. Miranville and R. Quintanilla, A Caginalp phase field system based on type Ⅲ heat conduction with two temperatures, Quarterly of Applied Mathematics, 74 (2016), 375–398. doi: 10.1090/qam/1430.  Google Scholar

[23]

A. J. Ntsokongo, On higher-order anisotropic caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput, 7 (2017), 992–1012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269.   Google Scholar

[25]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

show all references

References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, princeton, 1965.  Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Com. on Pure and Appl. Math., 12 (1959), 623–727. doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, Journal of Evolution Equations, 1 (2001), 69–84. doi: 10.1007/PL00001365.  Google Scholar

[4]

S. Aizicovici, E. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Mathematical Methods in the Applied Sciences, 24 (2001), 277–287. doi: 10.1002/mma.215.  Google Scholar

[5]

D. Brochet, D. Hilhorst, A. Novick-Cohen, et al., Maximal attractor and inertial sets for a conserved phase field model, Advances in Differential Equations, 1 (1996), 547–578.  Google Scholar

[6]

G. Caginalp, An analysis of a phase field model of a free boundary, Archive for Rational Mechanics and Analysis, 92 (1986), 205–245. doi: 10.1007/BF00254827.  Google Scholar

[7]

G. Caginalp, Conserved-phase field system, Implications for Kinetic Undercooling. Physical, Review B, 38 (1988), 789. Google Scholar

[8]

G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, hele-shaw, and cahn-hilliard models as asymptotic limits, IMA Journal of Applied Mathematics, 44 (1990), 77–94. doi: 10.1093/imamat/44.1.77.  Google Scholar

[9]

G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete and Continuous Dynamical Systems-S, 4 (2011), 311–350. doi: 10.3934/dcdss.2011.4.311.  Google Scholar

[10]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, i. interfacial free energy, The Journal of Chemical Physics, 28 (1958), 258-267.  doi: 10.1002/9781118788295.ch4.  Google Scholar

[11]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik und Physik (ZAMP), 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[12]

X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Archive for Rational Mechanics and Analysis, 202 (2011), 349–372. doi: 10.1007/s00205-011-0429-8.  Google Scholar

[13]

L. Cherfils and A. Miranville, On the caginalp system with dynamic boundary conditions and singular potentials, Applications of Mathematics, 54 (2009), 89–115. doi: 10.1007/s10492-009-0008-6.  Google Scholar

[14]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, Journal of Statistical Physics, 87 (1997), 37–61. doi: 10.1007/BF02181479.  Google Scholar

[15]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions Ⅱ: Interface motion, SIAM Journal on Applied Mathematics, 58 (1998), 1707–1729. doi: 10.1137/S0036139996313046.  Google Scholar

[16]

M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2743–2783. doi: 10.1142/S0218202514500365.  Google Scholar

[17]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, 63 (1993), 410-423.  doi: 10.1016/0167-2789(93)90120-P.  Google Scholar

[18]

C. Laurence, A. Miranville and S. Peng, Higher-order models in phase separation, Journal of Applied Analysis and Computation, 7 (2017), 39–56.  Google Scholar

[19]

A. Miranville, Some mathematical models in phase transition, Discrete and Continuous Dynamical Systems-S, 7 (2014), 271–306. doi: 10.3934/dcdss.2014.7.271.  Google Scholar

[20]

A. Miranville, Higher-order anisotropic caginalp phase-field systems, Mediterranean Journal of Mathematics, 13 (2016), 4519–4535. doi: 10.1007/s00009-016-0760-2.  Google Scholar

[21]

A. Miranville, On higher-order anisotropic conservative caginalp phase-field systems, Applied Mathematics and Optimization, 77 (2018), 297–314. doi: 10.1007/s00245-016-9375-z.  Google Scholar

[22]

A. Miranville and R. Quintanilla, A Caginalp phase field system based on type Ⅲ heat conduction with two temperatures, Quarterly of Applied Mathematics, 74 (2016), 375–398. doi: 10.1090/qam/1430.  Google Scholar

[23]

A. J. Ntsokongo, On higher-order anisotropic caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput, 7 (2017), 992–1012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269.   Google Scholar

[25]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[1]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[4]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[7]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[8]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[9]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[10]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[11]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[12]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[13]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[17]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[18]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[19]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[20]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

2019 Impact Factor: 0.5

Article outline

[Back to Top]