2019, 26: 54-71. doi: 10.3934/era.2019.26.005

Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems

1. 

Lebanese University, Khawarizmi Laboratory for Mathematics and Applications, Hadath, Mont Liban, Beirut, Lebanon

2. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

3. 

Lebanese International University, Department of Mathematics and Physics, Lebanon

4. 

Xiamen University, School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen, Fujian, China

Received  May 2019 Revised  July 2019 Published  July 2019

This paper is dedicated to study the fully discretized semi implicit and implicit schemes of a 2D parabolic semi linear problem modeling MEMS devices. Starting with the analysis of the semi-implicit scheme, we proved the existence of the discrete solution which converges under certain conditions on the voltage $ \lambda $. On the other hand, we consider a fully implicit scheme, we proved the existence of the discrete solution, which also converges to the stationary solution under certain conditions on the voltage $ \lambda $ and on the time step. Finally, we did some numerical simulations which show the behavior of the solution.

Citation: Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005
References:
[1]

E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64. doi: 10.1017/s0962492900002336.  Google Scholar

[2]

N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470. doi: 10.1017/S0956792511000180.  Google Scholar

[3]

L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. Google Scholar

[4]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010. doi: 10.1090/cln/020.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.  Google Scholar

[6]

G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446. doi: 10.1137/060648866.  Google Scholar

[7]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449. doi: 10.1137/050647803.  Google Scholar

[8]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145. doi: 10.1007/s00030-007-6004-1.  Google Scholar

[9]

Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309. doi: 10.1016/j.jde.2008.02.005.  Google Scholar

[10]

Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338. doi: 10.1137/040613391.  Google Scholar

[11]

S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011. doi: 10.1002/9781118111130.  Google Scholar

[12]

I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998.  Google Scholar

[13]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908. doi: 10.1137/S0036139900381079.  Google Scholar

[14]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[15]

J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. Google Scholar

[16]

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366. doi: 10.1023/A:1012292311304.  Google Scholar

[17]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[18]

Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144. doi: 10.1007/s11401-018-1056-6.  Google Scholar

show all references

References:
[1]

E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64. doi: 10.1017/s0962492900002336.  Google Scholar

[2]

N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470. doi: 10.1017/S0956792511000180.  Google Scholar

[3]

L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. Google Scholar

[4]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010. doi: 10.1090/cln/020.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.  Google Scholar

[6]

G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446. doi: 10.1137/060648866.  Google Scholar

[7]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449. doi: 10.1137/050647803.  Google Scholar

[8]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145. doi: 10.1007/s00030-007-6004-1.  Google Scholar

[9]

Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309. doi: 10.1016/j.jde.2008.02.005.  Google Scholar

[10]

Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338. doi: 10.1137/040613391.  Google Scholar

[11]

S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011. doi: 10.1002/9781118111130.  Google Scholar

[12]

I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998.  Google Scholar

[13]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908. doi: 10.1137/S0036139900381079.  Google Scholar

[14]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[15]

J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. Google Scholar

[16]

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366. doi: 10.1023/A:1012292311304.  Google Scholar

[17]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[18]

Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144. doi: 10.1007/s11401-018-1056-6.  Google Scholar

Figure 1.  $ \lambda = 10,\; f(x,y) = \sqrt{x^2 +y^2},\; \tau = 0.01,\; M = 29 $
Figure 2.  $ \lambda = 10,\; f(x,y) = \sqrt{x^2 +y^2},\; \tau = 20,\; M = 29 $
3(a) touchdown is observed at $t = 682\tau$ however in 3(b) it is observed at $t = 1.3339\tau$">Figure 3.  $\lambda = 11.5, \; f(x, y) = \sqrt{x^2 +y^2}, \; \tau = 0.001, \; M = 35$, in 3(a) touchdown is observed at $t = 682\tau$ however in 3(b) it is observed at $t = 1.3339\tau$
[1]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[2]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[3]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[4]

Peng Tong, Xiaogang Ma. Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1577-1591. doi: 10.3934/jimo.2020035

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[6]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[7]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[8]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[9]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[10]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[11]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[12]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[13]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[14]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[15]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[16]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[17]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[18]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[19]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[20]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (214)
  • HTML views (776)
  • Cited by (0)

[Back to Top]