
- Previous Article
- ERA-MS Home
- This Volume
-
Next Article
On higher-order anisotropic perturbed Caginalp phase field systems
Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems
1. | Lebanese University, Khawarizmi Laboratory for Mathematics and Applications, Hadath, Mont Liban, Beirut, Lebanon |
2. | Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France |
3. | Lebanese International University, Department of Mathematics and Physics, Lebanon |
4. | Xiamen University, School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen, Fujian, China |
This paper is dedicated to study the fully discretized semi implicit and implicit schemes of a 2D parabolic semi linear problem modeling MEMS devices. Starting with the analysis of the semi-implicit scheme, we proved the existence of the discrete solution which converges under certain conditions on the voltage $ \lambda $. On the other hand, we consider a fully implicit scheme, we proved the existence of the discrete solution, which also converges to the stationary solution under certain conditions on the voltage $ \lambda $ and on the time step. Finally, we did some numerical simulations which show the behavior of the solution.
References:
[1] |
E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64.
doi: 10.1017/s0962492900002336. |
[2] |
N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470.
doi: 10.1017/S0956792511000180. |
[3] |
L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. Google Scholar |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/cln/020. |
[5] |
L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] |
G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446.
doi: 10.1137/060648866. |
[7] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449.
doi: 10.1137/050647803. |
[8] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145.
doi: 10.1007/s00030-007-6004-1. |
[9] |
Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309.
doi: 10.1016/j.jde.2008.02.005. |
[10] |
Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338.
doi: 10.1137/040613391. |
[11] |
S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011.
doi: 10.1002/9781118111130. |
[12] |
I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. |
[13] |
J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908.
doi: 10.1137/S0036139900381079. |
[14] |
J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[15] |
J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. Google Scholar |
[16] |
J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366.
doi: 10.1023/A:1012292311304. |
[17] |
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[18] |
Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144.
doi: 10.1007/s11401-018-1056-6. |
show all references
References:
[1] |
E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64.
doi: 10.1017/s0962492900002336. |
[2] |
N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470.
doi: 10.1017/S0956792511000180. |
[3] |
L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. Google Scholar |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/cln/020. |
[5] |
L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] |
G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446.
doi: 10.1137/060648866. |
[7] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449.
doi: 10.1137/050647803. |
[8] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145.
doi: 10.1007/s00030-007-6004-1. |
[9] |
Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309.
doi: 10.1016/j.jde.2008.02.005. |
[10] |
Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338.
doi: 10.1137/040613391. |
[11] |
S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011.
doi: 10.1002/9781118111130. |
[12] |
I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. |
[13] |
J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908.
doi: 10.1137/S0036139900381079. |
[14] |
J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[15] |
J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. Google Scholar |
[16] |
J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366.
doi: 10.1023/A:1012292311304. |
[17] |
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[18] |
Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144.
doi: 10.1007/s11401-018-1056-6. |


[1] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[2] |
Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230 |
[3] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[4] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[5] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[6] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[7] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[8] |
Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021006 |
[9] |
Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231 |
[10] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[11] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[12] |
Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020055 |
[13] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[14] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[15] |
Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043 |
[16] |
Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053 |
[17] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[18] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[19] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[20] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]