
- Previous Article
- ERA-MS Home
- This Volume
-
Next Article
On higher-order anisotropic perturbed Caginalp phase field systems
Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems
1. | Lebanese University, Khawarizmi Laboratory for Mathematics and Applications, Hadath, Mont Liban, Beirut, Lebanon |
2. | Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France |
3. | Lebanese International University, Department of Mathematics and Physics, Lebanon |
4. | Xiamen University, School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen, Fujian, China |
This paper is dedicated to study the fully discretized semi implicit and implicit schemes of a 2D parabolic semi linear problem modeling MEMS devices. Starting with the analysis of the semi-implicit scheme, we proved the existence of the discrete solution which converges under certain conditions on the voltage $ \lambda $. On the other hand, we consider a fully implicit scheme, we proved the existence of the discrete solution, which also converges to the stationary solution under certain conditions on the voltage $ \lambda $ and on the time step. Finally, we did some numerical simulations which show the behavior of the solution.
References:
[1] |
E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64.
doi: 10.1017/s0962492900002336. |
[2] |
N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470.
doi: 10.1017/S0956792511000180. |
[3] |
L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. Google Scholar |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/cln/020. |
[5] |
L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] |
G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446.
doi: 10.1137/060648866. |
[7] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449.
doi: 10.1137/050647803. |
[8] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145.
doi: 10.1007/s00030-007-6004-1. |
[9] |
Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309.
doi: 10.1016/j.jde.2008.02.005. |
[10] |
Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338.
doi: 10.1137/040613391. |
[11] |
S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011.
doi: 10.1002/9781118111130. |
[12] |
I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. |
[13] |
J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908.
doi: 10.1137/S0036139900381079. |
[14] |
J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[15] |
J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. Google Scholar |
[16] |
J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366.
doi: 10.1023/A:1012292311304. |
[17] |
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[18] |
Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144.
doi: 10.1007/s11401-018-1056-6. |
show all references
References:
[1] |
E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64.
doi: 10.1017/s0962492900002336. |
[2] |
N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470.
doi: 10.1017/S0956792511000180. |
[3] |
L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. Google Scholar |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/cln/020. |
[5] |
L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] |
G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446.
doi: 10.1137/060648866. |
[7] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449.
doi: 10.1137/050647803. |
[8] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145.
doi: 10.1007/s00030-007-6004-1. |
[9] |
Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309.
doi: 10.1016/j.jde.2008.02.005. |
[10] |
Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338.
doi: 10.1137/040613391. |
[11] |
S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011.
doi: 10.1002/9781118111130. |
[12] |
I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. |
[13] |
J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908.
doi: 10.1137/S0036139900381079. |
[14] |
J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[15] |
J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. Google Scholar |
[16] |
J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366.
doi: 10.1023/A:1012292311304. |
[17] |
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[18] |
Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144.
doi: 10.1007/s11401-018-1056-6. |


[1] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021085 |
[2] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[3] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[4] |
Peng Tong, Xiaogang Ma. Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1577-1591. doi: 10.3934/jimo.2020035 |
[5] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[6] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[7] |
Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250 |
[8] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[9] |
Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021089 |
[10] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[11] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[12] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[13] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[14] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[15] |
Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021009 |
[16] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[17] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[18] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[19] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[20] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]