
- Previous Article
- ERA-MS Home
- This Volume
-
Next Article
On higher-order anisotropic perturbed Caginalp phase field systems
Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems
1. | Lebanese University, Khawarizmi Laboratory for Mathematics and Applications, Hadath, Mont Liban, Beirut, Lebanon |
2. | Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France |
3. | Lebanese International University, Department of Mathematics and Physics, Lebanon |
4. | Xiamen University, School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen, Fujian, China |
This paper is dedicated to study the fully discretized semi implicit and implicit schemes of a 2D parabolic semi linear problem modeling MEMS devices. Starting with the analysis of the semi-implicit scheme, we proved the existence of the discrete solution which converges under certain conditions on the voltage $ \lambda $. On the other hand, we consider a fully implicit scheme, we proved the existence of the discrete solution, which also converges to the stationary solution under certain conditions on the voltage $ \lambda $ and on the time step. Finally, we did some numerical simulations which show the behavior of the solution.
References:
[1] |
E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64.
doi: 10.1017/s0962492900002336. |
[2] |
N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470.
doi: 10.1017/S0956792511000180. |
[3] |
L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/cln/020. |
[5] |
L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] |
G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446.
doi: 10.1137/060648866. |
[7] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449.
doi: 10.1137/050647803. |
[8] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145.
doi: 10.1007/s00030-007-6004-1. |
[9] |
Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309.
doi: 10.1016/j.jde.2008.02.005. |
[10] |
Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338.
doi: 10.1137/040613391. |
[11] |
S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011.
doi: 10.1002/9781118111130. |
[12] |
I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. |
[13] |
J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908.
doi: 10.1137/S0036139900381079. |
[14] |
J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[15] |
J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. |
[16] |
J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366.
doi: 10.1023/A:1012292311304. |
[17] |
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[18] |
Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144.
doi: 10.1007/s11401-018-1056-6. |
show all references
References:
[1] |
E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1–64.
doi: 10.1017/s0962492900002336. |
[2] |
N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, European Journal of Applied Mathematics, 22 (2011), 455–470.
doi: 10.1017/S0956792511000180. |
[3] |
L. Cherfils, A. Miranville, S. Peng and C. Xu, Analysis of discretized parabolic problems modelling Electrostatic Micro-Electromechanical systems, AIMS Journals, 2018. |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modelling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/cln/020. |
[5] |
L. C. Evans, Partial Differential Equations , Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] |
G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touch down model of electrostatic MEMS, SIAM Jpournal on Applied Mathematics, 67 (2006/07), 434–446.
doi: 10.1137/060648866. |
[7] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Applied Mathematics, 38 (2006/07), 1423–1449.
doi: 10.1137/050647803. |
[8] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA Nonlinear Differential Equations and Applications, 15 (2008), 115–145.
doi: 10.1007/s00030-007-6004-1. |
[9] |
Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277–2309.
doi: 10.1016/j.jde.2008.02.005. |
[10] |
Y. Guo, Z. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309–338.
doi: 10.1137/040613391. |
[11] |
S. H. Lui, Numerical Analysis of Partial Differential Equations, John Wiley & Sons, Inc., Hoboken, NJ, 2011.
doi: 10.1002/9781118111130. |
[12] |
I. Stakgold, Green's Functions and Boundary Value Problems, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. |
[13] |
J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM Journal on Applied Mathematics, 62 (2002), 888–908.
doi: 10.1137/S0036139900381079. |
[14] |
J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[15] |
J. A. Pelesko, D. H. Bernstein and J. McCuan, Symmetry and Symmetry Breaking in Electrostatic MEMS, Proceedings of MSM, (2003), 304–307. |
[16] |
J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, Journal of Engineering Mathematics, 41 (2001), 345–366.
doi: 10.1023/A:1012292311304. |
[17] |
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[18] |
Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chinese Annals of Mathematics, 39 (2018), 129–144.
doi: 10.1007/s11401-018-1056-6. |


[1] |
Joshua Hudson, Michael Jolly. Numerical efficacy study of data assimilation for the 2D magnetohydrodynamic equations. Journal of Computational Dynamics, 2019, 6 (1) : 131-145. doi: 10.3934/jcd.2019006 |
[2] |
Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic and Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685 |
[3] |
Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2117-2131. doi: 10.3934/cpaa.2019095 |
[4] |
Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145 |
[5] |
Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395 |
[6] |
Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1525-1537. doi: 10.3934/dcdss.2013.6.1525 |
[7] |
Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations and Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297 |
[8] |
Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations and Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57 |
[9] |
Laurence Cherfils, Alain Miranville, Shuiran Peng, Chuanju Xu. Analysis of discretized parabolic problems modeling electrostatic micro-electromechanical systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1601-1621. doi: 10.3934/dcdss.2019109 |
[10] |
Gerhard Kirsten. Multilinear POD-DEIM model reduction for 2D and 3D semilinear systems of differential equations. Journal of Computational Dynamics, 2022, 9 (2) : 159-183. doi: 10.3934/jcd.2021025 |
[11] |
Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102 |
[12] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085 |
[13] |
Brian Ryals, Robert J. Sacker. Global stability in the 2D Ricker equation revisited. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 585-604. doi: 10.3934/dcdsb.2017028 |
[14] |
Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 |
[15] |
María J. Martín, Jukka Tuomela. 2D incompressible Euler equations: New explicit solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4547-4563. doi: 10.3934/dcds.2019187 |
[16] |
Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025 |
[17] |
Yuri N. Fedorov, Luis C. García-Naranjo, Joris Vankerschaver. The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4017-4040. doi: 10.3934/dcds.2013.33.4017 |
[18] |
Theodore Kolokolnikov, Juncheng Wei. Hexagonal spike clusters for some PDE's in 2D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4057-4070. doi: 10.3934/dcdsb.2020039 |
[19] |
Makram Hamouda, Chang-Yeol Jung, Roger Temam. Boundary layers for the 2D linearized primitive equations. Communications on Pure and Applied Analysis, 2009, 8 (1) : 335-359. doi: 10.3934/cpaa.2009.8.335 |
[20] |
A. Rousseau, Roger Temam, J. Tribbia. Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1257-1276. doi: 10.3934/dcds.2005.13.1257 |
2020 Impact Factor: 0.929
Tools
Article outline
Figures and Tables
[Back to Top]