2019, 27: 7-19. doi: 10.3934/era.2019007

On the time decay in phase–lag thermoelasticity with two temperatures

1. 

Departament de Matemàtiques, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain

2. 

Laboratoire de Mathématiques et Applications, Université de Poitiers, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

* Corresponding author: Alain Miranville

Received  June 2019 Revised  November 2019 Published  September 2019

Fund Project: The first and the third authors are supported by the project "Análisis Matemático de Problemas de la Termomecánica" (MTM2016-74934-P), (AEI/FEDER, UE) of the Spanish Ministry of Economy and Competitiveness.

The aim of this paper is to study the time decay of the solutions for two models of the one-dimensional phase-lag thermoelasticity with two temperatures. The first one is obtained when the heat flux vector and the inductive temperature are approximated by a second-order and first-order Taylor polynomial, respectively. In this case, the solutions decay in a slow way. The second model that we consider is obtained taking first-order Taylor approximations for the inductive thermal displacement, the inductive temperature and the heat flux. The decay is, therefore, of exponential type.

Citation: Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007
References:
[1]

I. A. Abdallah, Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser, Progress in Physics, 3 (2009), 60-63.   Google Scholar

[2]

S. Banik and M. Kanoria, Effects of three-phase-lag on two temperatures generalized thermoelasticity for an infinite medium with a spherical cavity, Applied Mathematics and Mechanics, 33 (2012), 483-498.  doi: 10.1007/s10483-012-1565-8.  Google Scholar

[3]

K. BorgmeyerR. Quintanilla and R. Racke, Phase-lag heat conduction: Decay rates for limit problems and well-posedness, J. Evolution Equations, 14 (2014), 863-884.  doi: 10.1007/s00028-014-0242-6.  Google Scholar

[4]

P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 614-627.   Google Scholar

[5]

P. J. ChenM. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 969-970.  doi: 10.1007/BF01602278.  Google Scholar

[6]

P. J. ChenM. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Applied Mathematics and Physics (ZAMP), 20 (1969), 107-112.   Google Scholar

[7]

S. K. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231-238.  doi: 10.1080/01495730601130919.  Google Scholar

[8]

M. DreherR. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Applied Mathematics Letters, 22 (2009), 1374-1379.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[9]

M. A. EzzatA. S. El-Karamany and S. M. Ezzat, Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer, Nuclear Engineering and Design, 252 (2012), 267-277.  doi: 10.1016/j.nucengdes.2012.06.012.  Google Scholar

[10]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. doi: 10.1080/01495739208946136.  Google Scholar

[11]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. doi: 10.1007/BF00044969.  Google Scholar

[12]

M. A. HaderM. A. Al-Nimr and B. A. Abu Nabah, The Dual-Phase-Lag heat conduction model in thin slabs under a fluctuating volumetric thermal disturbance, Int. J. Thermophysics, 23 (2002), 1669-1680.   Google Scholar

[13]

F. L. Huang, Strong asymptotic stability of linear dynamical systems in Banach spaces, J. Differential Equations, 104 (1993), 307-324.  doi: 10.1006/jdeq.1993.1074.  Google Scholar

[14]

R. Quintanilla and P. M. Jordan, A note on the two-temperature theory with dual-phase-lag decay: Some exact solutions, Mechanics Research Communications, 36 (2009), 796-803.  doi: 10.1016/j.mechrescom.2009.05.002.  Google Scholar

[15]

M. C. LeseduarteR. Quintanilla and R. Racke, On (non-)exponential decay in generalized thermoelasticity with two temperatures, Applied Mathematics Letters, 70 (2017), 18-25.  doi: 10.1016/j.aml.2017.02.020.  Google Scholar

[16]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 398, Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[17]

A. MagañaA. Miranville and R. Quintanilla, On the stability in phase-lag heat conduction with two temperatures, J. of Evolution Equations, 18 (2018), 1697-1712.  doi: 10.1007/s00028-018-0457-z.  Google Scholar

[18]

J. E. Marsden and T. J. R. Hughes, Topics in the mathematical foundations of elasticity, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. II, 30-285, Res. Notes in Math., 27, Pitman, Boston, Mass.-London, 1978.  Google Scholar

[19]

A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Applied Mathematics and Optimization, 63 (2011), 133-150.  doi: 10.1007/s00245-010-9114-9.  Google Scholar

[20]

S. MukhopadhyayR Prasad and R. Kumar, On the theory of Two-Temperature Thermoelaticity with Two Phase-Lags, J. Thermal Stresses, 34 (2011), 352-365.   Google Scholar

[21]

M. A. OthmanW. M. Hasona and E. M. Abd-Elaziz, Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase-lag model, Canadian J. Physics, 92 (2014), 149-158.  doi: 10.1139/cjp-2013-0398.  Google Scholar

[22]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[23]

R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilibrium Thermodynamics, 27 (2002), 217-227.  doi: 10.1515/JNETDY.2002.012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the Dual-Phase-Lag heat conduction, J. Thermal Stresses, 31 (2008), 260-269.   Google Scholar

[25]

R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.  doi: 10.1080/01495730903310599.  Google Scholar

[26]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977-1001.  doi: 10.1137/05062860X.  Google Scholar

[27]

R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209-1213.  doi: 10.1016/j.ijheatmasstransfer.2005.10.016.  Google Scholar

[28]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A, 463 (2007), 659-674.  doi: 10.1098/rspa.2006.1784.  Google Scholar

[29]

R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24-29.   Google Scholar

[30]

R. Quintanilla and R. Racke, Spatial behavior in phase-lag heat conduction, Differential and Integral Equations, 28 (2015), 291-308.   Google Scholar

[31]

S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, Int. J. Heat and Mass Transfer, 78 (2014), 58-63.  doi: 10.1016/j.ijheatmasstransfer.2014.06.066.  Google Scholar

[32]

D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8-16.  doi: 10.1115/1.2822329.  Google Scholar

[33]

W. E. Warren and P. J. Chen, Wave propagation in two temperatures theory of thermoelaticity, Acta Mechanica, 16 (1973), 83-117.   Google Scholar

[34]

Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, Int. J. of Heat and Mass Transfer, 52 (2009), 4829-4834.  doi: 10.1016/j.ijheatmasstransfer.2009.06.007.  Google Scholar

show all references

References:
[1]

I. A. Abdallah, Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser, Progress in Physics, 3 (2009), 60-63.   Google Scholar

[2]

S. Banik and M. Kanoria, Effects of three-phase-lag on two temperatures generalized thermoelasticity for an infinite medium with a spherical cavity, Applied Mathematics and Mechanics, 33 (2012), 483-498.  doi: 10.1007/s10483-012-1565-8.  Google Scholar

[3]

K. BorgmeyerR. Quintanilla and R. Racke, Phase-lag heat conduction: Decay rates for limit problems and well-posedness, J. Evolution Equations, 14 (2014), 863-884.  doi: 10.1007/s00028-014-0242-6.  Google Scholar

[4]

P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 614-627.   Google Scholar

[5]

P. J. ChenM. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 969-970.  doi: 10.1007/BF01602278.  Google Scholar

[6]

P. J. ChenM. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Applied Mathematics and Physics (ZAMP), 20 (1969), 107-112.   Google Scholar

[7]

S. K. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231-238.  doi: 10.1080/01495730601130919.  Google Scholar

[8]

M. DreherR. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Applied Mathematics Letters, 22 (2009), 1374-1379.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[9]

M. A. EzzatA. S. El-Karamany and S. M. Ezzat, Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer, Nuclear Engineering and Design, 252 (2012), 267-277.  doi: 10.1016/j.nucengdes.2012.06.012.  Google Scholar

[10]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. doi: 10.1080/01495739208946136.  Google Scholar

[11]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. doi: 10.1007/BF00044969.  Google Scholar

[12]

M. A. HaderM. A. Al-Nimr and B. A. Abu Nabah, The Dual-Phase-Lag heat conduction model in thin slabs under a fluctuating volumetric thermal disturbance, Int. J. Thermophysics, 23 (2002), 1669-1680.   Google Scholar

[13]

F. L. Huang, Strong asymptotic stability of linear dynamical systems in Banach spaces, J. Differential Equations, 104 (1993), 307-324.  doi: 10.1006/jdeq.1993.1074.  Google Scholar

[14]

R. Quintanilla and P. M. Jordan, A note on the two-temperature theory with dual-phase-lag decay: Some exact solutions, Mechanics Research Communications, 36 (2009), 796-803.  doi: 10.1016/j.mechrescom.2009.05.002.  Google Scholar

[15]

M. C. LeseduarteR. Quintanilla and R. Racke, On (non-)exponential decay in generalized thermoelasticity with two temperatures, Applied Mathematics Letters, 70 (2017), 18-25.  doi: 10.1016/j.aml.2017.02.020.  Google Scholar

[16]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 398, Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[17]

A. MagañaA. Miranville and R. Quintanilla, On the stability in phase-lag heat conduction with two temperatures, J. of Evolution Equations, 18 (2018), 1697-1712.  doi: 10.1007/s00028-018-0457-z.  Google Scholar

[18]

J. E. Marsden and T. J. R. Hughes, Topics in the mathematical foundations of elasticity, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. II, 30-285, Res. Notes in Math., 27, Pitman, Boston, Mass.-London, 1978.  Google Scholar

[19]

A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Applied Mathematics and Optimization, 63 (2011), 133-150.  doi: 10.1007/s00245-010-9114-9.  Google Scholar

[20]

S. MukhopadhyayR Prasad and R. Kumar, On the theory of Two-Temperature Thermoelaticity with Two Phase-Lags, J. Thermal Stresses, 34 (2011), 352-365.   Google Scholar

[21]

M. A. OthmanW. M. Hasona and E. M. Abd-Elaziz, Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase-lag model, Canadian J. Physics, 92 (2014), 149-158.  doi: 10.1139/cjp-2013-0398.  Google Scholar

[22]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[23]

R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilibrium Thermodynamics, 27 (2002), 217-227.  doi: 10.1515/JNETDY.2002.012.  Google Scholar

[24]

R. Quintanilla, A well-posed problem for the Dual-Phase-Lag heat conduction, J. Thermal Stresses, 31 (2008), 260-269.   Google Scholar

[25]

R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.  doi: 10.1080/01495730903310599.  Google Scholar

[26]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977-1001.  doi: 10.1137/05062860X.  Google Scholar

[27]

R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209-1213.  doi: 10.1016/j.ijheatmasstransfer.2005.10.016.  Google Scholar

[28]

R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A, 463 (2007), 659-674.  doi: 10.1098/rspa.2006.1784.  Google Scholar

[29]

R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24-29.   Google Scholar

[30]

R. Quintanilla and R. Racke, Spatial behavior in phase-lag heat conduction, Differential and Integral Equations, 28 (2015), 291-308.   Google Scholar

[31]

S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, Int. J. Heat and Mass Transfer, 78 (2014), 58-63.  doi: 10.1016/j.ijheatmasstransfer.2014.06.066.  Google Scholar

[32]

D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8-16.  doi: 10.1115/1.2822329.  Google Scholar

[33]

W. E. Warren and P. J. Chen, Wave propagation in two temperatures theory of thermoelaticity, Acta Mechanica, 16 (1973), 83-117.   Google Scholar

[34]

Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, Int. J. of Heat and Mass Transfer, 52 (2009), 4829-4834.  doi: 10.1016/j.ijheatmasstransfer.2009.06.007.  Google Scholar

[1]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[4]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[7]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[14]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[15]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[17]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

 Impact Factor: 0.263

Article outline

[Back to Top]