2019, 27: 20-36. doi: 10.3934/era.2019008

Well-posed final value problems and Duhamel's formula for coercive Lax–Milgram operators

Department of Mathematics, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark

Received  August 2019 Revised  September 2019 Published  October 2019

This paper treats parabolic final value problems generated by coercive Lax–Milgram operators, and well-posedness is proved for this large class. The result is obtained by means of an isomorphism between Hilbert spaces containing the data and solutions. Like for elliptic generators, the data space is the graph normed domain of an unbounded operator that maps final states to the corresponding initial states, and the resulting compatibility condition extends to the coercive context. Lax–Milgram operators in vector distribution spaces is the main framework, but the crucial tool that analytic semigroups always are invertible in the class of closed operators is extended to unbounded semigroups, and this is shown to yield a Duhamel formula for the Cauchy problems in the set-up. The final value heat conduction problem with the homogeneous Neumann boundary condition on a smooth open set is also proved to be well posed in the sense of Hadamard.

Citation: Jon Johnsen. Well-posed final value problems and Duhamel's formula for coercive Lax–Milgram operators. Electronic Research Archive, 2019, 27: 20-36. doi: 10.3934/era.2019008
References:
[1]

Y. Almog and B. Helffer, On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent, Comm. PDE, 40 (2015), 1441-1466.  doi: 10.1080/03605302.2015.1025978.  Google Scholar

[2]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, Abstract Linear Theory, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[3]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, 2nd ed., Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[4]

A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Acad. Sci. Paris, Ser. I, 356 (2018), 301-305.  doi: 10.1016/j.crma.2018.01.019.  Google Scholar

[5]

A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), 31.  doi: 10.3390/axioms7020031.  Google Scholar

[6]

R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953.  Google Scholar

[7]

E. B. Davies, One-parameter Semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc., London-New York, 1980.  Google Scholar

[8]

L. Eldén, Approximations for a Cauchy problem for the heat equation, Inverse Problems, 3 (1987), 263-273.  doi: 10.1088/0266-5611/3/2/009.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, second ed., American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

D.S. GrebenkovB. Helffer and R. Henry, The complex Airy operator on the line with a semipermeable barrier, SIAM J. Math. Anal., 49 (2017), 1844-1894.  doi: 10.1137/16M1067408.  Google Scholar

[11]

D. S. Grebenkov and B. Helffer, On the spectral properties of the Bloch–Torrey operator in two dimensions, SIAM J. Math. Anal., 50 (2018), 622-676.  doi: 10.1137/16M1088387.  Google Scholar

[12]

G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, vol. 252, Springer, New York, 2009.  Google Scholar

[13]

G. Grubb and V. A. Solonnikov, Solution of parabolic pseudo-differential initial-boundary value problems, J. Differential Equations, 87 (1990), 256-304.  doi: 10.1016/0022-0396(90)90003-8.  Google Scholar

[14]

B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, vol. 139, Cambridge University Press, Cambridge, 2013.  Google Scholar

[15]

I. W. Herbst, Dilation analyticity in constant electric field. I. The two body problem, Comm. Math. Phys., 64 (1979), 279-298.  doi: 10.1007/BF01221735.  Google Scholar

[16]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983. doi: 10.1007/978-3-642-96750-4.  Google Scholar

[17]

L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications, vol. 26, Springer Verlag, Berlin, 1997.  Google Scholar

[18]

J. Janas, On unbounded hyponormal operators Ⅲ, Studia Mathematica, 112 (1994), 75-82.  doi: 10.4064/sm-112-1-75-82.  Google Scholar

[19]

F. John, Numerical solution of the equation of heat conduction for preceding times, Ann. Mat. Pura Appl. (4), 40 (1955), 129-142.  doi: 10.1007/BF02416528.  Google Scholar

[20]

J. Johnsen, Characterization of log-convex decay in non-selfadjoint dynamics, Elec. Res. Ann. Math., 25 (2018), 72-86.  doi: 10.3934/era.2018.25.008.  Google Scholar

[21]

J. Johnsen, A class of well-posed parabolic final value problems, Appl. Num. Harm. Ana., Birkhäuser (to appear). arXiv: 1904.05190. Google Scholar

[22]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of mathematical monographs, vol. 23, Amer. Math. Soc., 1968.  Google Scholar

[23]

J.-L. Lions and B. Malgrange, Sur l'unicité rétrograde dans les problèmes mixtes parabolic, Math. Scand., 8 (1960), 227-286.  doi: 10.7146/math.scand.a-10611.  Google Scholar

[24]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.  Google Scholar

[25]

W. L. Miranker, A well posed problem for the backward heat equation, Proc. Amer. Math. Soc., 12 (1961), 243-247.  doi: 10.1090/S0002-9939-1961-0120462-2.  Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

J. Rauch, Partial Differential Equations, Springer, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[28]

L. Schwartz, Théorie Des Distributions, revised and enlarged ed., Hermann, Paris, 1966.  Google Scholar

[29]

R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.  doi: 10.1016/0022-247X(74)90008-0.  Google Scholar

[30]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, vol. 6, Pitman, Boston, Mass., 1979.  Google Scholar

[31]

R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis, Elsevier Science Publishers B.V., Amsterdam, 1984.  Google Scholar

[32]

K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin-New York, 1980.  Google Scholar

show all references

References:
[1]

Y. Almog and B. Helffer, On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent, Comm. PDE, 40 (2015), 1441-1466.  doi: 10.1080/03605302.2015.1025978.  Google Scholar

[2]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, Abstract Linear Theory, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[3]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, 2nd ed., Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[4]

A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Acad. Sci. Paris, Ser. I, 356 (2018), 301-305.  doi: 10.1016/j.crma.2018.01.019.  Google Scholar

[5]

A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), 31.  doi: 10.3390/axioms7020031.  Google Scholar

[6]

R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953.  Google Scholar

[7]

E. B. Davies, One-parameter Semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc., London-New York, 1980.  Google Scholar

[8]

L. Eldén, Approximations for a Cauchy problem for the heat equation, Inverse Problems, 3 (1987), 263-273.  doi: 10.1088/0266-5611/3/2/009.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, second ed., American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

D.S. GrebenkovB. Helffer and R. Henry, The complex Airy operator on the line with a semipermeable barrier, SIAM J. Math. Anal., 49 (2017), 1844-1894.  doi: 10.1137/16M1067408.  Google Scholar

[11]

D. S. Grebenkov and B. Helffer, On the spectral properties of the Bloch–Torrey operator in two dimensions, SIAM J. Math. Anal., 50 (2018), 622-676.  doi: 10.1137/16M1088387.  Google Scholar

[12]

G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, vol. 252, Springer, New York, 2009.  Google Scholar

[13]

G. Grubb and V. A. Solonnikov, Solution of parabolic pseudo-differential initial-boundary value problems, J. Differential Equations, 87 (1990), 256-304.  doi: 10.1016/0022-0396(90)90003-8.  Google Scholar

[14]

B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, vol. 139, Cambridge University Press, Cambridge, 2013.  Google Scholar

[15]

I. W. Herbst, Dilation analyticity in constant electric field. I. The two body problem, Comm. Math. Phys., 64 (1979), 279-298.  doi: 10.1007/BF01221735.  Google Scholar

[16]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983. doi: 10.1007/978-3-642-96750-4.  Google Scholar

[17]

L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications, vol. 26, Springer Verlag, Berlin, 1997.  Google Scholar

[18]

J. Janas, On unbounded hyponormal operators Ⅲ, Studia Mathematica, 112 (1994), 75-82.  doi: 10.4064/sm-112-1-75-82.  Google Scholar

[19]

F. John, Numerical solution of the equation of heat conduction for preceding times, Ann. Mat. Pura Appl. (4), 40 (1955), 129-142.  doi: 10.1007/BF02416528.  Google Scholar

[20]

J. Johnsen, Characterization of log-convex decay in non-selfadjoint dynamics, Elec. Res. Ann. Math., 25 (2018), 72-86.  doi: 10.3934/era.2018.25.008.  Google Scholar

[21]

J. Johnsen, A class of well-posed parabolic final value problems, Appl. Num. Harm. Ana., Birkhäuser (to appear). arXiv: 1904.05190. Google Scholar

[22]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of mathematical monographs, vol. 23, Amer. Math. Soc., 1968.  Google Scholar

[23]

J.-L. Lions and B. Malgrange, Sur l'unicité rétrograde dans les problèmes mixtes parabolic, Math. Scand., 8 (1960), 227-286.  doi: 10.7146/math.scand.a-10611.  Google Scholar

[24]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.  Google Scholar

[25]

W. L. Miranker, A well posed problem for the backward heat equation, Proc. Amer. Math. Soc., 12 (1961), 243-247.  doi: 10.1090/S0002-9939-1961-0120462-2.  Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

J. Rauch, Partial Differential Equations, Springer, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[28]

L. Schwartz, Théorie Des Distributions, revised and enlarged ed., Hermann, Paris, 1966.  Google Scholar

[29]

R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.  doi: 10.1016/0022-247X(74)90008-0.  Google Scholar

[30]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, vol. 6, Pitman, Boston, Mass., 1979.  Google Scholar

[31]

R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis, Elsevier Science Publishers B.V., Amsterdam, 1984.  Google Scholar

[32]

K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin-New York, 1980.  Google Scholar

[1]

W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111

[2]

T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems & Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040

[3]

Rinaldo M. Colombo, Mauro Garavello. A Well Posed Riemann Problem for the $p$--System at a Junction. Networks & Heterogeneous Media, 2006, 1 (3) : 495-511. doi: 10.3934/nhm.2006.1.495

[4]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[5]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Multiple solutions for nonlinear coercive Neumann problems. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1957-1974. doi: 10.3934/cpaa.2009.8.1957

[6]

Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238

[7]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[8]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[9]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[10]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[11]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

[12]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[13]

Pablo Amster, Man Kam Kwong, Colin Rogers. A Neumann Boundary Value Problem in Two-Ion Electro-Diffusion with Unequal Valencies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2299-2311. doi: 10.3934/dcdsb.2012.17.2299

[14]

Ariela Briani, Hasnaa Zidani. Characterization of the value function of final state constrained control problems with BV trajectories. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1567-1587. doi: 10.3934/cpaa.2011.10.1567

[15]

Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127

[16]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[17]

Federica Dragoni. Metric Hopf-Lax formula with semicontinuous data. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 713-729. doi: 10.3934/dcds.2007.17.713

[18]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[19]

Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63

[20]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

2018 Impact Factor: 0.263

Article outline

[Back to Top]