-
Previous Article
The global conservative solutions for the generalized camassa-holm equation
- ERA Home
- This Volume
-
Next Article
On the time decay in phase–lag thermoelasticity with two temperatures
Well-posed final value problems and Duhamel's formula for coercive Lax–Milgram operators
Department of Mathematics, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark |
This paper treats parabolic final value problems generated by coercive Lax–Milgram operators, and well-posedness is proved for this large class. The result is obtained by means of an isomorphism between Hilbert spaces containing the data and solutions. Like for elliptic generators, the data space is the graph normed domain of an unbounded operator that maps final states to the corresponding initial states, and the resulting compatibility condition extends to the coercive context. Lax–Milgram operators in vector distribution spaces is the main framework, but the crucial tool that analytic semigroups always are invertible in the class of closed operators is extended to unbounded semigroups, and this is shown to yield a Duhamel formula for the Cauchy problems in the set-up. The final value heat conduction problem with the homogeneous Neumann boundary condition on a smooth open set is also proved to be well posed in the sense of Hadamard.
References:
[1] |
Y. Almog and B. Helffer,
On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent, Comm. PDE, 40 (2015), 1441-1466.
doi: 10.1080/03605302.2015.1025978. |
[2] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, Abstract Linear Theory, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[3] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, 2nd ed., Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011.
doi: 10.1007/978-3-0348-0087-7. |
[4] |
A.-E. Christensen and J. Johnsen,
On parabolic final value problems and well-posedness, C. R. Acad. Sci. Paris, Ser. I, 356 (2018), 301-305.
doi: 10.1016/j.crma.2018.01.019. |
[5] |
A.-E. Christensen and J. Johnsen,
Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), 31.
doi: 10.3390/axioms7020031. |
[6] |
R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. |
[7] |
E. B. Davies, One-parameter Semigroups, London Mathematical Society Monographs, vol. 15,
Academic Press, Inc., London-New York, 1980. |
[8] |
L. Eldén,
Approximations for a Cauchy problem for the heat equation, Inverse Problems, 3 (1987), 263-273.
doi: 10.1088/0266-5611/3/2/009. |
[9] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, second ed., American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[10] |
D.S. Grebenkov, B. Helffer and R. Henry,
The complex Airy operator on the line with a semipermeable barrier, SIAM J. Math. Anal., 49 (2017), 1844-1894.
doi: 10.1137/16M1067408. |
[11] |
D. S. Grebenkov and B. Helffer,
On the spectral properties of the Bloch–Torrey operator in two dimensions, SIAM J. Math. Anal., 50 (2018), 622-676.
doi: 10.1137/16M1088387. |
[12] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, vol. 252, Springer, New York, 2009. |
[13] |
G. Grubb and V. A. Solonnikov,
Solution of parabolic pseudo-differential initial-boundary value problems, J. Differential Equations, 87 (1990), 256-304.
doi: 10.1016/0022-0396(90)90003-8. |
[14] |
B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, vol. 139, Cambridge University Press, Cambridge, 2013. |
[15] |
I. W. Herbst,
Dilation analyticity in constant electric field. I. The two body problem, Comm. Math. Phys., 64 (1979), 279-298.
doi: 10.1007/BF01221735. |
[16] |
L. Hörmander, The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-96750-4. |
[17] |
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications, vol. 26, Springer Verlag, Berlin, 1997. |
[18] |
J. Janas,
On unbounded hyponormal operators Ⅲ, Studia Mathematica, 112 (1994), 75-82.
doi: 10.4064/sm-112-1-75-82. |
[19] |
F. John,
Numerical solution of the equation of heat conduction for preceding times, Ann. Mat. Pura Appl. (4), 40 (1955), 129-142.
doi: 10.1007/BF02416528. |
[20] |
J. Johnsen,
Characterization of log-convex decay in non-selfadjoint dynamics, Elec. Res. Ann. Math., 25 (2018), 72-86.
doi: 10.3934/era.2018.25.008. |
[21] |
J. Johnsen, A class of well-posed parabolic final value problems, Appl. Num. Harm. Ana., Birkhäuser (to appear). arXiv: 1904.05190. Google Scholar |
[22] |
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of mathematical monographs, vol. 23, Amer. Math. Soc., 1968. |
[23] |
J.-L. Lions and B. Malgrange,
Sur l'unicité rétrograde dans les problèmes mixtes parabolic, Math. Scand., 8 (1960), 227-286.
doi: 10.7146/math.scand.a-10611. |
[24] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. |
[25] |
W. L. Miranker,
A well posed problem for the backward heat equation, Proc. Amer. Math. Soc., 12 (1961), 243-247.
doi: 10.1090/S0002-9939-1961-0120462-2. |
[26] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[27] |
J. Rauch, Partial Differential Equations, Springer, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[28] |
L. Schwartz, Théorie Des Distributions, revised and enlarged ed., Hermann, Paris, 1966. |
[29] |
R. E. Showalter,
The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0. |
[30] |
H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, vol. 6, Pitman, Boston, Mass., 1979. |
[31] |
R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis, Elsevier Science Publishers B.V., Amsterdam, 1984. |
[32] |
K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin-New York, 1980. |
show all references
References:
[1] |
Y. Almog and B. Helffer,
On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent, Comm. PDE, 40 (2015), 1441-1466.
doi: 10.1080/03605302.2015.1025978. |
[2] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, Abstract Linear Theory, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[3] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, 2nd ed., Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011.
doi: 10.1007/978-3-0348-0087-7. |
[4] |
A.-E. Christensen and J. Johnsen,
On parabolic final value problems and well-posedness, C. R. Acad. Sci. Paris, Ser. I, 356 (2018), 301-305.
doi: 10.1016/j.crma.2018.01.019. |
[5] |
A.-E. Christensen and J. Johnsen,
Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), 31.
doi: 10.3390/axioms7020031. |
[6] |
R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. |
[7] |
E. B. Davies, One-parameter Semigroups, London Mathematical Society Monographs, vol. 15,
Academic Press, Inc., London-New York, 1980. |
[8] |
L. Eldén,
Approximations for a Cauchy problem for the heat equation, Inverse Problems, 3 (1987), 263-273.
doi: 10.1088/0266-5611/3/2/009. |
[9] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, second ed., American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[10] |
D.S. Grebenkov, B. Helffer and R. Henry,
The complex Airy operator on the line with a semipermeable barrier, SIAM J. Math. Anal., 49 (2017), 1844-1894.
doi: 10.1137/16M1067408. |
[11] |
D. S. Grebenkov and B. Helffer,
On the spectral properties of the Bloch–Torrey operator in two dimensions, SIAM J. Math. Anal., 50 (2018), 622-676.
doi: 10.1137/16M1088387. |
[12] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, vol. 252, Springer, New York, 2009. |
[13] |
G. Grubb and V. A. Solonnikov,
Solution of parabolic pseudo-differential initial-boundary value problems, J. Differential Equations, 87 (1990), 256-304.
doi: 10.1016/0022-0396(90)90003-8. |
[14] |
B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, vol. 139, Cambridge University Press, Cambridge, 2013. |
[15] |
I. W. Herbst,
Dilation analyticity in constant electric field. I. The two body problem, Comm. Math. Phys., 64 (1979), 279-298.
doi: 10.1007/BF01221735. |
[16] |
L. Hörmander, The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-96750-4. |
[17] |
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications, vol. 26, Springer Verlag, Berlin, 1997. |
[18] |
J. Janas,
On unbounded hyponormal operators Ⅲ, Studia Mathematica, 112 (1994), 75-82.
doi: 10.4064/sm-112-1-75-82. |
[19] |
F. John,
Numerical solution of the equation of heat conduction for preceding times, Ann. Mat. Pura Appl. (4), 40 (1955), 129-142.
doi: 10.1007/BF02416528. |
[20] |
J. Johnsen,
Characterization of log-convex decay in non-selfadjoint dynamics, Elec. Res. Ann. Math., 25 (2018), 72-86.
doi: 10.3934/era.2018.25.008. |
[21] |
J. Johnsen, A class of well-posed parabolic final value problems, Appl. Num. Harm. Ana., Birkhäuser (to appear). arXiv: 1904.05190. Google Scholar |
[22] |
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of mathematical monographs, vol. 23, Amer. Math. Soc., 1968. |
[23] |
J.-L. Lions and B. Malgrange,
Sur l'unicité rétrograde dans les problèmes mixtes parabolic, Math. Scand., 8 (1960), 227-286.
doi: 10.7146/math.scand.a-10611. |
[24] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. |
[25] |
W. L. Miranker,
A well posed problem for the backward heat equation, Proc. Amer. Math. Soc., 12 (1961), 243-247.
doi: 10.1090/S0002-9939-1961-0120462-2. |
[26] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[27] |
J. Rauch, Partial Differential Equations, Springer, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[28] |
L. Schwartz, Théorie Des Distributions, revised and enlarged ed., Hermann, Paris, 1966. |
[29] |
R. E. Showalter,
The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0. |
[30] |
H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, vol. 6, Pitman, Boston, Mass., 1979. |
[31] |
R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis, Elsevier Science Publishers B.V., Amsterdam, 1984. |
[32] |
K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin-New York, 1980. |
[1] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[2] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
[3] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[4] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[5] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
[6] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[7] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[8] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[9] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[10] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[11] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[12] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[13] |
Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037 |
[14] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[15] |
Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021, 3 (1) : 1-26. doi: 10.3934/fods.2021002 |
[16] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[17] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[18] |
Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027 |
[19] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375 |
[20] |
Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058 |
Impact Factor: 0.263
Tools
Article outline
[Back to Top]