2019, 27: 89-99. doi: 10.3934/era.2019011

Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle

School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

Received  September 2019 Revised  December 2019 Published  December 2019

This paper deals with the initial value problem of a predator-prey system with dispersal and delay, which does not admit the classical comparison principle. When the initial value has nonempty compact support, the initial value problem formulates that two species synchronously invade the same habitat in population dynamics. By constructing proper auxiliary equations and functions, we confirm the faster invasion speed of two species, which equals to the minimal wave speed of traveling wave solutions in earlier works.

Citation: Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In Partial Differential Equations and Related Topics, J.A. Goldstein Eds., Lecture Notes in Mathematics, Vol. 446. Springer, Berlin, German, (1975), 5–49.  Google Scholar

[2]

X. Bao and W.-T. Li, Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats, Nonlinear Anal. Real World Appl., 51 (2020), 102975, 26 pp.  doi: 10.1016/j.nonrwa.2019.102975.  Google Scholar

[3]

X. BaoW.-T. LiW. Shen and Z.-C. Wang, Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems, J. Differential Equations, 265 (2018), 3048-3091.  doi: 10.1016/j.jde.2018.05.003.  Google Scholar

[4]

P. W. Bates, On some nonlocal evolution equations arising in materials science, In: Nonlinear Dynamics and Evolution Equations (Ed. by H. Brunner, X.Q. Zhao, X. Zou), Fields Inst. Commun., 48 (2006), 13–52, AMS, Providence.  Google Scholar

[5]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 725-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[6]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.  doi: 10.1137/140958141.  Google Scholar

[7]

A. Ducrot, Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system,, J. Math. Pures Appl., 100 (2013), 1-15.  doi: 10.1016/j.matpur.2012.10.009.  Google Scholar

[8]

A. Ducrot, Spatial propagation for a two component reaction-diffusion system arising in population dynamics, J. Differ. Equations, 260 (2016), 8316-8357.  doi: 10.1016/j.jde.2016.02.023.  Google Scholar

[9]

A. Ducrot, J. S. Guo, G. Lin and S. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), Art. 146, 25 pp. doi: 10.1007/s00033-019-1188-x.  Google Scholar

[10]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[11]

W. F. Fagan and J. G. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens, Amer. Nat., 155 (2000), 238-251.  doi: 10.1086/303320.  Google Scholar

[12]

J. Fang and X. Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.  doi: 10.1137/140953939.  Google Scholar

[13]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, In: Trends in Nonlinear Analysis (Ed. by M. Kirkilionis, S. Kr$\ddot{o}$mker, R. Rannacher, F. Tomi), 153–191, Springer: Berlin, 2003.  Google Scholar

[14]

L. Hopf, Introduction to Differential Equations of Physics, Dover: New York, 1948.  Google Scholar

[15]

Y. Jin and X. Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[16]

X. Li and S. Pan, Traveling wave solutions of a delayed cooperative system, Mathematics, 7 (2019), ID: 269. doi: 10.3390/math7030269.  Google Scholar

[17]

X. Li, S. Pan and H. B. Shi, Minimal wave speed in a dispersal predator-prey system with delays, Boundary Value Problems, 2018 (2018), Paper No. 49, 26 pp. doi: 10.1186/s13661-018-0966-2.  Google Scholar

[18]

X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[19]

G. Lin, Spreading speeds of a Lotka-Volterra predator-prey system: the role of the predator, Nonlinear Analysis, 74 (2011), 2448-2461.  doi: 10.1016/j.na.2010.11.046.  Google Scholar

[20]

G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: A cooperative system, Physica D, 241 (2012), 705-710.  doi: 10.1016/j.physd.2011.12.007.  Google Scholar

[21]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, Eur. J. Appl. Math., 23 (2012), 669-689.  doi: 10.1017/S0956792512000198.  Google Scholar

[22]

G. LinW. T. Li and S. Ruan, Spreading speeds and traveling waves of a competitive recursion, J. Math. Biol., 62 (2011), 165-201.  doi: 10.1007/s00285-010-0334-z.  Google Scholar

[23]

G. LinS. Pan and X. P. Yan, Spreading speeds of epidemic models with nonlocal delays, Mathe. Biosci. Eng., 16 (2019), 7562-7588.  doi: 10.3934/mbe.2019380.  Google Scholar

[24]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays, J. Dyn. Differ. Equ., 26 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[25]

X. L. Liu and S. Pan, Spreading speed in a nonmonotone equation with dispersal and delay, Mathematics, 7 (2019), 291.  doi: 10.3390/math7030291.  Google Scholar

[26]

R. Lui, Biological growth and spread modeled by systems of recursions. Ⅰ. Mathematical theory, Math. Biosci., 93 (1989), 269-295.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[27]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[28]

J. D. Murray, Mathematical Biology, II. Spatial Models and Biomedical Applications., Third edition, Interdisciplinary Applied Mathematics, 18, Springer-Verlag: New York, 2003.  Google Scholar

[29]

M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion, Bull. Math. Biol., 63 (2001), 655-684.  doi: 10.1006/bulm.2001.0239.  Google Scholar

[30]

S. Pan, Asymptotic spreading in a Lotka-Volterra predator-prey system, J. Math. Anal. Appl., 407 (2013), 230-236.  doi: 10.1016/j.jmaa.2013.05.031.  Google Scholar

[31]

S. Pan, Convergence and traveling wave solutions for a predator-prey system with distributed delays, Mediterr. J. Math., 14 (2017), Art. 103, 15 pp. doi: 10.1007/s00009-017-0905-y.  Google Scholar

[32]

S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[33]

S. PanG. Lin and J. Wang, Propagation thresholds of competitive integrodifference systems, J. Difference Equ. Appl., 25 (2019), 1680-1705.  doi: 10.1080/10236198.2019.1678597.  Google Scholar

[34]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press: Oxford, UK, 1997. Google Scholar

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS: Providence, RI, USA, 1995.  Google Scholar

[36]

M. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differential Equations, 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[37]

H. F. Weinberger, Long-time behavior of a class of biological model, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.  Google Scholar

[38]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[39]

P. Weng and X. Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[40] Q. YeZ. LiM. Wang and Y. Wu, Introduction to Reaction Diffusion Equations, Science Press, Beijing, 2011.   Google Scholar
[41]

Z. Yu and R. Yuan, Travelling wave solutions in non-local convolution diffusive competitive-cooperative systems, IMA J. Appl. Math., 76 (2011), 493-513.  doi: 10.1093/imamat/hxq048.  Google Scholar

[42]

G. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[43]

X. Q. Zhao, Spatial dynamics of some evolution systems in biology, In Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, Y. Du, H. Ishii, W.Y. Lin, Eds.; World Scientific: Singapore, 2009,332–363. doi: 10.1142/9789812834744_0015.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In Partial Differential Equations and Related Topics, J.A. Goldstein Eds., Lecture Notes in Mathematics, Vol. 446. Springer, Berlin, German, (1975), 5–49.  Google Scholar

[2]

X. Bao and W.-T. Li, Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats, Nonlinear Anal. Real World Appl., 51 (2020), 102975, 26 pp.  doi: 10.1016/j.nonrwa.2019.102975.  Google Scholar

[3]

X. BaoW.-T. LiW. Shen and Z.-C. Wang, Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems, J. Differential Equations, 265 (2018), 3048-3091.  doi: 10.1016/j.jde.2018.05.003.  Google Scholar

[4]

P. W. Bates, On some nonlocal evolution equations arising in materials science, In: Nonlinear Dynamics and Evolution Equations (Ed. by H. Brunner, X.Q. Zhao, X. Zou), Fields Inst. Commun., 48 (2006), 13–52, AMS, Providence.  Google Scholar

[5]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 725-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[6]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.  doi: 10.1137/140958141.  Google Scholar

[7]

A. Ducrot, Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system,, J. Math. Pures Appl., 100 (2013), 1-15.  doi: 10.1016/j.matpur.2012.10.009.  Google Scholar

[8]

A. Ducrot, Spatial propagation for a two component reaction-diffusion system arising in population dynamics, J. Differ. Equations, 260 (2016), 8316-8357.  doi: 10.1016/j.jde.2016.02.023.  Google Scholar

[9]

A. Ducrot, J. S. Guo, G. Lin and S. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), Art. 146, 25 pp. doi: 10.1007/s00033-019-1188-x.  Google Scholar

[10]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[11]

W. F. Fagan and J. G. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens, Amer. Nat., 155 (2000), 238-251.  doi: 10.1086/303320.  Google Scholar

[12]

J. Fang and X. Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.  doi: 10.1137/140953939.  Google Scholar

[13]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, In: Trends in Nonlinear Analysis (Ed. by M. Kirkilionis, S. Kr$\ddot{o}$mker, R. Rannacher, F. Tomi), 153–191, Springer: Berlin, 2003.  Google Scholar

[14]

L. Hopf, Introduction to Differential Equations of Physics, Dover: New York, 1948.  Google Scholar

[15]

Y. Jin and X. Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[16]

X. Li and S. Pan, Traveling wave solutions of a delayed cooperative system, Mathematics, 7 (2019), ID: 269. doi: 10.3390/math7030269.  Google Scholar

[17]

X. Li, S. Pan and H. B. Shi, Minimal wave speed in a dispersal predator-prey system with delays, Boundary Value Problems, 2018 (2018), Paper No. 49, 26 pp. doi: 10.1186/s13661-018-0966-2.  Google Scholar

[18]

X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[19]

G. Lin, Spreading speeds of a Lotka-Volterra predator-prey system: the role of the predator, Nonlinear Analysis, 74 (2011), 2448-2461.  doi: 10.1016/j.na.2010.11.046.  Google Scholar

[20]

G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: A cooperative system, Physica D, 241 (2012), 705-710.  doi: 10.1016/j.physd.2011.12.007.  Google Scholar

[21]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, Eur. J. Appl. Math., 23 (2012), 669-689.  doi: 10.1017/S0956792512000198.  Google Scholar

[22]

G. LinW. T. Li and S. Ruan, Spreading speeds and traveling waves of a competitive recursion, J. Math. Biol., 62 (2011), 165-201.  doi: 10.1007/s00285-010-0334-z.  Google Scholar

[23]

G. LinS. Pan and X. P. Yan, Spreading speeds of epidemic models with nonlocal delays, Mathe. Biosci. Eng., 16 (2019), 7562-7588.  doi: 10.3934/mbe.2019380.  Google Scholar

[24]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays, J. Dyn. Differ. Equ., 26 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[25]

X. L. Liu and S. Pan, Spreading speed in a nonmonotone equation with dispersal and delay, Mathematics, 7 (2019), 291.  doi: 10.3390/math7030291.  Google Scholar

[26]

R. Lui, Biological growth and spread modeled by systems of recursions. Ⅰ. Mathematical theory, Math. Biosci., 93 (1989), 269-295.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[27]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[28]

J. D. Murray, Mathematical Biology, II. Spatial Models and Biomedical Applications., Third edition, Interdisciplinary Applied Mathematics, 18, Springer-Verlag: New York, 2003.  Google Scholar

[29]

M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion, Bull. Math. Biol., 63 (2001), 655-684.  doi: 10.1006/bulm.2001.0239.  Google Scholar

[30]

S. Pan, Asymptotic spreading in a Lotka-Volterra predator-prey system, J. Math. Anal. Appl., 407 (2013), 230-236.  doi: 10.1016/j.jmaa.2013.05.031.  Google Scholar

[31]

S. Pan, Convergence and traveling wave solutions for a predator-prey system with distributed delays, Mediterr. J. Math., 14 (2017), Art. 103, 15 pp. doi: 10.1007/s00009-017-0905-y.  Google Scholar

[32]

S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[33]

S. PanG. Lin and J. Wang, Propagation thresholds of competitive integrodifference systems, J. Difference Equ. Appl., 25 (2019), 1680-1705.  doi: 10.1080/10236198.2019.1678597.  Google Scholar

[34]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press: Oxford, UK, 1997. Google Scholar

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS: Providence, RI, USA, 1995.  Google Scholar

[36]

M. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differential Equations, 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[37]

H. F. Weinberger, Long-time behavior of a class of biological model, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.  Google Scholar

[38]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[39]

P. Weng and X. Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[40] Q. YeZ. LiM. Wang and Y. Wu, Introduction to Reaction Diffusion Equations, Science Press, Beijing, 2011.   Google Scholar
[41]

Z. Yu and R. Yuan, Travelling wave solutions in non-local convolution diffusive competitive-cooperative systems, IMA J. Appl. Math., 76 (2011), 493-513.  doi: 10.1093/imamat/hxq048.  Google Scholar

[42]

G. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[43]

X. Q. Zhao, Spatial dynamics of some evolution systems in biology, In Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, Y. Du, H. Ishii, W.Y. Lin, Eds.; World Scientific: Singapore, 2009,332–363. doi: 10.1142/9789812834744_0015.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[6]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

 Impact Factor: 0.263

Metrics

  • PDF downloads (146)
  • HTML views (315)
  • Cited by (0)

Other articles
by authors

[Back to Top]