March  2020, 28(1): 1-13. doi: 10.3934/era.2020001

Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence

School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

* Corresponding author. Supported by the NSF of China (11761046)

Received  September 2019 Revised  December 2019 Published  March 2020

In this paper, the existence and non-existence of traveling wave solutions are established for a nonlocal dispersal SIR model equipped delay and generalized incidence. In addition, the existence and asymptotic behaviors of traveling waves under critical wave speed are also contained. Especially, the boundedness of traveling waves is obtained completely without imposing additional conditions on the nonlinear incidence.

Citation: Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combusion, and nerve pulse propagation, Partial Differential Equations and Related Topics, 446 (1975), 5-49.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

Z. G. Bai and S. L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Applied Mathematics and Computation, 263 (2015), 221-232.  doi: 10.1016/j.amc.2015.04.048.  Google Scholar

[4]

J. Coville and L. Dupaigne, Propagation speed of traveling fronts in nonlocal reaction-diffusion equation, Nonl. Anal., 60 (2005), 797-819.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[5]

A. DucrotP. Magal and S. G. Ruan, Travelling wave solutions in multigroup age-structure epidemic models, Arch. Ratinal Mech. Anal., 195 (2010), 311-331.  doi: 10.1007/s00205-008-0203-8.  Google Scholar

[6]

A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A Math., 139 (2009), 459-482.  doi: 10.1017/S0308210507000455.  Google Scholar

[7]

P. C. Fife and J. B. Mcleod, The approach of solutions nonlinear diffusion equations to traveling front solutions, Arch. Ratinal Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[8]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Can. Appl. Math. Q., 10 (2002), 473-499.   Google Scholar

[9]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. Ser. B, 115 (1927), 700-721.   Google Scholar

[10]

W. T. LiJ. B. Wang and X. Q Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, Journal of Nonlinear Science, 28 (2018), 1189-1219.  doi: 10.1007/s00332-018-9445-2.  Google Scholar

[11]

W. T. Li and F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, Journal of Integral Equations and Applications, 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[12]

J. B. WangW. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Communications in Nonlinear Science and Numerical Simulation, 27 (2015), 136-152.  doi: 10.1016/j.cnsns.2015.03.005.  Google Scholar

[13]

X. S. WangH. Y. Wang and J. H. Wu, Travelling waves of diffusive predator-pery systems: Disease outbreak propagation, Discrete Cont. Dyn. Syst., 32 (2012), 3303-3324.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[14]

Z. C. Wang and J. H. Wu, Travelling waves of a diffiusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 237-261.  doi: 10.1098/rspa.2009.0377.  Google Scholar

[15] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941.   Google Scholar
[16]

S. L. Wu and S. G. Ruan, Entire solutions for nonlocal dispersal equations with spatio-temporal delay: Monostable case, J. Differential Equations, 258 (2015), 2435-2470.  doi: 10.1016/j.jde.2014.12.013.  Google Scholar

[17]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Cont. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[18]

F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[19]

S. P. Zhang, Y. R. Yang and Y. H. Zhang, Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence, J. Math. Phys., 59 (2018), 011513, 15pp. doi: 10.1063/1.5021761.  Google Scholar

[20]

G. B. ZhangW. T. Li and Z. C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[21]

X. Zou and S. L. Wu, Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence, Acta Mathematica Scientia, 38 (2018), 496-513.   Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combusion, and nerve pulse propagation, Partial Differential Equations and Related Topics, 446 (1975), 5-49.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

Z. G. Bai and S. L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Applied Mathematics and Computation, 263 (2015), 221-232.  doi: 10.1016/j.amc.2015.04.048.  Google Scholar

[4]

J. Coville and L. Dupaigne, Propagation speed of traveling fronts in nonlocal reaction-diffusion equation, Nonl. Anal., 60 (2005), 797-819.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[5]

A. DucrotP. Magal and S. G. Ruan, Travelling wave solutions in multigroup age-structure epidemic models, Arch. Ratinal Mech. Anal., 195 (2010), 311-331.  doi: 10.1007/s00205-008-0203-8.  Google Scholar

[6]

A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A Math., 139 (2009), 459-482.  doi: 10.1017/S0308210507000455.  Google Scholar

[7]

P. C. Fife and J. B. Mcleod, The approach of solutions nonlinear diffusion equations to traveling front solutions, Arch. Ratinal Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[8]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Can. Appl. Math. Q., 10 (2002), 473-499.   Google Scholar

[9]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. Ser. B, 115 (1927), 700-721.   Google Scholar

[10]

W. T. LiJ. B. Wang and X. Q Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, Journal of Nonlinear Science, 28 (2018), 1189-1219.  doi: 10.1007/s00332-018-9445-2.  Google Scholar

[11]

W. T. Li and F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, Journal of Integral Equations and Applications, 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[12]

J. B. WangW. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Communications in Nonlinear Science and Numerical Simulation, 27 (2015), 136-152.  doi: 10.1016/j.cnsns.2015.03.005.  Google Scholar

[13]

X. S. WangH. Y. Wang and J. H. Wu, Travelling waves of diffusive predator-pery systems: Disease outbreak propagation, Discrete Cont. Dyn. Syst., 32 (2012), 3303-3324.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[14]

Z. C. Wang and J. H. Wu, Travelling waves of a diffiusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 237-261.  doi: 10.1098/rspa.2009.0377.  Google Scholar

[15] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941.   Google Scholar
[16]

S. L. Wu and S. G. Ruan, Entire solutions for nonlocal dispersal equations with spatio-temporal delay: Monostable case, J. Differential Equations, 258 (2015), 2435-2470.  doi: 10.1016/j.jde.2014.12.013.  Google Scholar

[17]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Cont. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[18]

F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[19]

S. P. Zhang, Y. R. Yang and Y. H. Zhang, Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence, J. Math. Phys., 59 (2018), 011513, 15pp. doi: 10.1063/1.5021761.  Google Scholar

[20]

G. B. ZhangW. T. Li and Z. C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[21]

X. Zou and S. L. Wu, Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence, Acta Mathematica Scientia, 38 (2018), 496-513.   Google Scholar

[1]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[5]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[11]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

 Impact Factor: 0.263

Article outline

[Back to Top]