March  2020, 28(1): 15-25. doi: 10.3934/era.2020002

Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion

1. 

Department of Mathematics, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea

2. 

Department of Mathematics, Incheon National University, Incheon 22012, Republic of Korea

* Corresponding author: Byungsoo Moon

Received  September 2019 Revised  October 2019 Published  March 2020

Fund Project: The first author is supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03031180). The second author is supported by Incheon National University Research Grant in 2017.

In this paper, we consider the dissipative Degasperis-Procesi equation with arbitrary dispersion coefficient and compactly supported initial data. We establish the simple condition on the initial data which lead to guarantee that the solution exists globally. We also investigate the propagation speed for the equation under the initial data is compactly supported.

Citation: Guenbo Hwang, Byungsoo Moon. Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28 (1) : 15-25. doi: 10.3934/era.2020002
References:
[1]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[2]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165-186.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[3]

A. DegasperisD. Holm and A. Hone, A new integrable equation with peakon solution, Theoret. and Math. Phys, 133 (2002), 1463-1474.  doi: 10.1023/A:1021186408422.  Google Scholar

[4]

H. R. DullinG. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg -de Veris-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res., 33 (2003), 73-95.  doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[5]

Z. Guo, Some properties of solutions to the weakly dissipative Degasperis-Procesi equation, J. Differential Equations, 246 (2009), 4332-4344.  doi: 10.1016/j.jde.2009.01.032.  Google Scholar

[6]

Z. GuoS. Lai and Y. Wang, Global weak solutions to the weakly dissipative Degasperis-Procesi equation, Nonlinear Anal., 74 (2011), 4961-4973.  doi: 10.1016/j.na.2011.04.051.  Google Scholar

[7]

D. Henry, Persistence properties for the Degasperis-Procesi equation, J. Hyperbolic Differ. Equ., 5 (2008), 99-111.  doi: 10.1142/S0219891608001404.  Google Scholar

[8]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597-606.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[9]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa–Holm equation, Comm. Math. Phys., 271 (2007), 511-522.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[10]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.  doi: 10.1017/S0022112001007224.  Google Scholar

[11]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations, Lecture Notes in Math., Springer Verlag, Berlin, 448(1975), 25–70.  Google Scholar

[12]

J. Lenells and M. Wunsch, On the weakly dissipative Camassa-Holm, Degasperis-Procesi, and Novikov equations, J. Differential Equations, 255 (2013), 441-448.  doi: 10.1016/j.jde.2013.04.015.  Google Scholar

[13]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[14]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[15]

Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.  doi: 10.3934/dcdsb.2007.7.171.  Google Scholar

[16]

O. G. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14.  doi: 10.2991/jnmp.2005.12.1.2.  Google Scholar

[17]

E. Novruzova and A. Hagverdiyevb, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541.  doi: 10.1016/j.jde.2014.08.016.  Google Scholar

[18]

S. WuJ. Escher and Z. Yin, Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 633-645.  doi: 10.3934/dcdsb.2009.12.633.  Google Scholar

[19]

S. Wu and Z. Yin, Blow-up and decay of the solution of the weakly dissipative Degasperis-Procesi equation, SIAM J. Math. Anal., 40 (2008), 475-490.  doi: 10.1137/07070855X.  Google Scholar

[20]

R. XuM. ZhangS. ChenY. Yang and J. Shen, The initial-boundary value problems for a class of sixth order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.  doi: 10.3934/dcds.2017244.  Google Scholar

[21]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649-666.  doi: 10.1215/ijm/1258138186.  Google Scholar

[22]

R. Zheng and Z. Yin, Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system, Discrete Contin. Dyn. Syst., 38 (2018), 329-341.  doi: 10.3934/dcds.2018016.  Google Scholar

show all references

References:
[1]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[2]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165-186.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[3]

A. DegasperisD. Holm and A. Hone, A new integrable equation with peakon solution, Theoret. and Math. Phys, 133 (2002), 1463-1474.  doi: 10.1023/A:1021186408422.  Google Scholar

[4]

H. R. DullinG. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg -de Veris-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res., 33 (2003), 73-95.  doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[5]

Z. Guo, Some properties of solutions to the weakly dissipative Degasperis-Procesi equation, J. Differential Equations, 246 (2009), 4332-4344.  doi: 10.1016/j.jde.2009.01.032.  Google Scholar

[6]

Z. GuoS. Lai and Y. Wang, Global weak solutions to the weakly dissipative Degasperis-Procesi equation, Nonlinear Anal., 74 (2011), 4961-4973.  doi: 10.1016/j.na.2011.04.051.  Google Scholar

[7]

D. Henry, Persistence properties for the Degasperis-Procesi equation, J. Hyperbolic Differ. Equ., 5 (2008), 99-111.  doi: 10.1142/S0219891608001404.  Google Scholar

[8]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597-606.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[9]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa–Holm equation, Comm. Math. Phys., 271 (2007), 511-522.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[10]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.  doi: 10.1017/S0022112001007224.  Google Scholar

[11]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations, Lecture Notes in Math., Springer Verlag, Berlin, 448(1975), 25–70.  Google Scholar

[12]

J. Lenells and M. Wunsch, On the weakly dissipative Camassa-Holm, Degasperis-Procesi, and Novikov equations, J. Differential Equations, 255 (2013), 441-448.  doi: 10.1016/j.jde.2013.04.015.  Google Scholar

[13]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[14]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[15]

Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.  doi: 10.3934/dcdsb.2007.7.171.  Google Scholar

[16]

O. G. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14.  doi: 10.2991/jnmp.2005.12.1.2.  Google Scholar

[17]

E. Novruzova and A. Hagverdiyevb, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541.  doi: 10.1016/j.jde.2014.08.016.  Google Scholar

[18]

S. WuJ. Escher and Z. Yin, Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 633-645.  doi: 10.3934/dcdsb.2009.12.633.  Google Scholar

[19]

S. Wu and Z. Yin, Blow-up and decay of the solution of the weakly dissipative Degasperis-Procesi equation, SIAM J. Math. Anal., 40 (2008), 475-490.  doi: 10.1137/07070855X.  Google Scholar

[20]

R. XuM. ZhangS. ChenY. Yang and J. Shen, The initial-boundary value problems for a class of sixth order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.  doi: 10.3934/dcds.2017244.  Google Scholar

[21]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649-666.  doi: 10.1215/ijm/1258138186.  Google Scholar

[22]

R. Zheng and Z. Yin, Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system, Discrete Contin. Dyn. Syst., 38 (2018), 329-341.  doi: 10.3934/dcds.2018016.  Google Scholar

[1]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[2]

Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171

[3]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[4]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[5]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[6]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[7]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[8]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[9]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[10]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[11]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[12]

Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure & Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261

[13]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[14]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[15]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[16]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[17]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[18]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[19]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[20]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

2018 Impact Factor: 0.263

Article outline

[Back to Top]