• Previous Article
    Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems
  • ERA Home
  • This Issue
  • Next Article
    The existence of solutions for a shear thinning compressible non-Newtonian models
March  2020, 28(1): 67-90. doi: 10.3934/era.2020005

Initial boundary value problem for a inhomogeneous pseudo-parabolic equation

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Jun Zhou

Received  September 2019 Revised  November 2019 Published  March 2020

Fund Project: The author is supported by NSF grant 11201380.

This paper deals with the global existence and blow-up of solutions to a inhomogeneous pseudo-parabolic equation with initial value $ u_0 $ in the Sobolev space $ H_0^1( \Omega) $, where $ \Omega\subset \mathbb{R}^n $ ($ n\geq1 $ is an integer) is a bounded domain. By using the mountain-pass level $ d $ (see (14)), the energy functional $ J $ (see (12)) and Nehari function $ I $ (see (13)), we decompose the space $ H_0^1( \Omega) $ into five parts, and in each part, we show the solutions exist globally or blow up in finite time. Furthermore, we study the decay rates for the global solutions and lifespan (i.e., the upper bound of blow-up time) of the blow-up solutions. Moreover, we give a blow-up result which does not depend on $ d $. By using this theorem, we prove the solution can blow up at arbitrary energy level, i.e. for any $ M\in \mathbb{R} $, there exists $ u_0\in H_0^1( \Omega) $ satisfying $ J(u_0) = M $ such that the corresponding solution blows up in finite time.

Citation: Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005
References:
[1]

G. BarenblatI. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.  doi: 10.1016/0021-8928(60)90107-6.  Google Scholar

[2]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47–78. doi: 10.1098/rsta.1972.0032.  Google Scholar

[3]

Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst., 36 (2016), 631–642. doi: 10.3934/dcds.2016.36.631.  Google Scholar

[4]

Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568–4590. doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[5]

Y. Cao, Z. Y. Wang and J. X. Yin., A semilinear pseudo-parabolic equation with initial data non-rarefied at $\infty$, J. Func. Anal., 277 (2019), 3737–3756. doi: 10.1016/j.jfa.2019.05.014.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.  Google Scholar

[7]

H. F. Di, Y. D. Shang and X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67–73. doi: 10.1016/j.aml.2016.08.013.  Google Scholar

[8]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124.  Google Scholar

[9]

Y. Z. Han, Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity, Appl. Math. Lett., 99 (2020), 105986, 7pp. doi: 10.1016/j.aml.2019.07.017.  Google Scholar

[10]

S. M. Ji, J. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446–5464. doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[11]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au + F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1–21. doi: 10.2307/1996814.  Google Scholar

[12]

Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181–3203. doi: 10.1007/s00033-015-0558-2.  Google Scholar

[13]

W. J. Liu and J. Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276–1283. doi: 10.1016/j.jfa.2018.01.005.  Google Scholar

[14]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. doi: 10.1016/j.na.2005.09.011.  Google Scholar

[15]

P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci., 38 (2015), 2636-2641.  doi: 10.1002/mma.3253.  Google Scholar

[16]

M. Marras, S. V.-Piro and G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2291–2300. doi: 10.3934/dcdsb.2017096.  Google Scholar

[17]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Tran. Amer. Math. Soc., 356 (2004), 2739–2756. doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[18]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. doi: 10.1007/BF02761595.  Google Scholar

[19]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172. doi: 10.1007/BF00250942.  Google Scholar

[20]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26. doi: 10.1137/0501001.  Google Scholar

[21]

F. L. Sun, L. S. Liu and Y. H. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Comput. Math. Appl., 75 (2018), 3685–3701. doi: 10.1016/j.camwa.2018.02.025.  Google Scholar

[22]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences., Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[23]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1–26. doi: 10.1007/BF00250690.  Google Scholar

[24]

G. Y. Xu and J. Zhou, Lifespan for a semilinear pseudo-parabolic equation, Math. Methods Appl. Sci., 41 (2018), 705–713.  Google Scholar

[25]

R. Z. Xu and Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Func. Anal., 264 (2013) 2732–2763] [ MR3045640], J. Funct. Anal., 270 (2016), 4039–4041. doi: 10.1016/j.jfa.2016.02.026.  Google Scholar

[26]

R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[27]

R. Z. Xu, X. C. Wang and Y. B. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181. doi: 10.1016/j.aml.2018.03.033.  Google Scholar

[28]

C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286–3303. doi: 10.1016/j.jde.2012.09.001.  Google Scholar

[29]

X. L. Zhu, F. Y. Li and Y. H. Li, Some sharp results about the global existence and blowup of solutions to a class of pseudo-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1311–1331. doi: 10.1017/S0308210516000494.  Google Scholar

show all references

References:
[1]

G. BarenblatI. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.  doi: 10.1016/0021-8928(60)90107-6.  Google Scholar

[2]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47–78. doi: 10.1098/rsta.1972.0032.  Google Scholar

[3]

Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst., 36 (2016), 631–642. doi: 10.3934/dcds.2016.36.631.  Google Scholar

[4]

Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568–4590. doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[5]

Y. Cao, Z. Y. Wang and J. X. Yin., A semilinear pseudo-parabolic equation with initial data non-rarefied at $\infty$, J. Func. Anal., 277 (2019), 3737–3756. doi: 10.1016/j.jfa.2019.05.014.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.  Google Scholar

[7]

H. F. Di, Y. D. Shang and X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67–73. doi: 10.1016/j.aml.2016.08.013.  Google Scholar

[8]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124.  Google Scholar

[9]

Y. Z. Han, Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity, Appl. Math. Lett., 99 (2020), 105986, 7pp. doi: 10.1016/j.aml.2019.07.017.  Google Scholar

[10]

S. M. Ji, J. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446–5464. doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[11]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au + F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1–21. doi: 10.2307/1996814.  Google Scholar

[12]

Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181–3203. doi: 10.1007/s00033-015-0558-2.  Google Scholar

[13]

W. J. Liu and J. Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276–1283. doi: 10.1016/j.jfa.2018.01.005.  Google Scholar

[14]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. doi: 10.1016/j.na.2005.09.011.  Google Scholar

[15]

P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci., 38 (2015), 2636-2641.  doi: 10.1002/mma.3253.  Google Scholar

[16]

M. Marras, S. V.-Piro and G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2291–2300. doi: 10.3934/dcdsb.2017096.  Google Scholar

[17]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Tran. Amer. Math. Soc., 356 (2004), 2739–2756. doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[18]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. doi: 10.1007/BF02761595.  Google Scholar

[19]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172. doi: 10.1007/BF00250942.  Google Scholar

[20]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26. doi: 10.1137/0501001.  Google Scholar

[21]

F. L. Sun, L. S. Liu and Y. H. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Comput. Math. Appl., 75 (2018), 3685–3701. doi: 10.1016/j.camwa.2018.02.025.  Google Scholar

[22]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences., Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[23]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1–26. doi: 10.1007/BF00250690.  Google Scholar

[24]

G. Y. Xu and J. Zhou, Lifespan for a semilinear pseudo-parabolic equation, Math. Methods Appl. Sci., 41 (2018), 705–713.  Google Scholar

[25]

R. Z. Xu and Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Func. Anal., 264 (2013) 2732–2763] [ MR3045640], J. Funct. Anal., 270 (2016), 4039–4041. doi: 10.1016/j.jfa.2016.02.026.  Google Scholar

[26]

R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[27]

R. Z. Xu, X. C. Wang and Y. B. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181. doi: 10.1016/j.aml.2018.03.033.  Google Scholar

[28]

C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286–3303. doi: 10.1016/j.jde.2012.09.001.  Google Scholar

[29]

X. L. Zhu, F. Y. Li and Y. H. Li, Some sharp results about the global existence and blowup of solutions to a class of pseudo-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1311–1331. doi: 10.1017/S0308210516000494.  Google Scholar

Figure 1.  The results for $ J(u_0)\leq d $
Figure 2.  The graphs of $ f $ and $ g $
[1]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[6]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[12]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[13]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[18]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

 Impact Factor: 0.263

Metrics

  • PDF downloads (202)
  • HTML views (461)
  • Cited by (0)

Other articles
by authors

[Back to Top]