
-
Previous Article
Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems
- ERA Home
- This Issue
-
Next Article
The existence of solutions for a shear thinning compressible non-Newtonian models
Initial boundary value problem for a inhomogeneous pseudo-parabolic equation
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
This paper deals with the global existence and blow-up of solutions to a inhomogeneous pseudo-parabolic equation with initial value $ u_0 $ in the Sobolev space $ H_0^1( \Omega) $, where $ \Omega\subset \mathbb{R}^n $ ($ n\geq1 $ is an integer) is a bounded domain. By using the mountain-pass level $ d $ (see (14)), the energy functional $ J $ (see (12)) and Nehari function $ I $ (see (13)), we decompose the space $ H_0^1( \Omega) $ into five parts, and in each part, we show the solutions exist globally or blow up in finite time. Furthermore, we study the decay rates for the global solutions and lifespan (i.e., the upper bound of blow-up time) of the blow-up solutions. Moreover, we give a blow-up result which does not depend on $ d $. By using this theorem, we prove the solution can blow up at arbitrary energy level, i.e. for any $ M\in \mathbb{R} $, there exists $ u_0\in H_0^1( \Omega) $ satisfying $ J(u_0) = M $ such that the corresponding solution blows up in finite time.
References:
[1] |
G. Barenblat, I. Zheltov and I. Kochiva,
Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
doi: 10.1016/0021-8928(60)90107-6. |
[2] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47–78.
doi: 10.1098/rsta.1972.0032. |
[3] |
Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst., 36 (2016), 631–642.
doi: 10.3934/dcds.2016.36.631. |
[4] |
Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568–4590.
doi: 10.1016/j.jde.2009.03.021. |
[5] |
Y. Cao, Z. Y. Wang and J. X. Yin., A semilinear pseudo-parabolic equation with initial data non-rarefied at $\infty$, J. Func. Anal., 277 (2019), 3737–3756.
doi: 10.1016/j.jfa.2019.05.014. |
[6] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors. |
[7] |
H. F. Di, Y. D. Shang and X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67–73.
doi: 10.1016/j.aml.2016.08.013. |
[8] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124. |
[9] |
Y. Z. Han, Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity, Appl. Math. Lett., 99 (2020), 105986, 7pp.
doi: 10.1016/j.aml.2019.07.017. |
[10] |
S. M. Ji, J. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446–5464.
doi: 10.1016/j.jde.2016.08.017. |
[11] |
H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au + F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1–21.
doi: 10.2307/1996814. |
[12] |
Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181–3203.
doi: 10.1007/s00033-015-0558-2. |
[13] |
W. J. Liu and J. Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276–1283.
doi: 10.1016/j.jfa.2018.01.005. |
[14] |
Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687.
doi: 10.1016/j.na.2005.09.011. |
[15] |
P. Luo,
Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci., 38 (2015), 2636-2641.
doi: 10.1002/mma.3253. |
[16] |
M. Marras, S. V.-Piro and G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2291–2300.
doi: 10.3934/dcdsb.2017096. |
[17] |
V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Tran. Amer. Math. Soc., 356 (2004), 2739–2756.
doi: 10.1090/S0002-9947-03-03340-3. |
[18] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303.
doi: 10.1007/BF02761595. |
[19] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172.
doi: 10.1007/BF00250942. |
[20] |
R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26.
doi: 10.1137/0501001. |
[21] |
F. L. Sun, L. S. Liu and Y. H. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Comput. Math. Appl., 75 (2018), 3685–3701.
doi: 10.1016/j.camwa.2018.02.025. |
[22] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences., Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[23] |
T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1–26.
doi: 10.1007/BF00250690. |
[24] |
G. Y. Xu and J. Zhou, Lifespan for a semilinear pseudo-parabolic equation, Math. Methods Appl. Sci., 41 (2018), 705–713. |
[25] |
R. Z. Xu and Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Func. Anal., 264 (2013) 2732–2763] [ MR3045640], J. Funct. Anal., 270 (2016), 4039–4041.
doi: 10.1016/j.jfa.2016.02.026. |
[26] |
R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763.
doi: 10.1016/j.jfa.2013.03.010. |
[27] |
R. Z. Xu, X. C. Wang and Y. B. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181.
doi: 10.1016/j.aml.2018.03.033. |
[28] |
C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286–3303.
doi: 10.1016/j.jde.2012.09.001. |
[29] |
X. L. Zhu, F. Y. Li and Y. H. Li, Some sharp results about the global existence and blowup of solutions to a class of pseudo-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1311–1331.
doi: 10.1017/S0308210516000494. |
show all references
References:
[1] |
G. Barenblat, I. Zheltov and I. Kochiva,
Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
doi: 10.1016/0021-8928(60)90107-6. |
[2] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47–78.
doi: 10.1098/rsta.1972.0032. |
[3] |
Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst., 36 (2016), 631–642.
doi: 10.3934/dcds.2016.36.631. |
[4] |
Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568–4590.
doi: 10.1016/j.jde.2009.03.021. |
[5] |
Y. Cao, Z. Y. Wang and J. X. Yin., A semilinear pseudo-parabolic equation with initial data non-rarefied at $\infty$, J. Func. Anal., 277 (2019), 3737–3756.
doi: 10.1016/j.jfa.2019.05.014. |
[6] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors. |
[7] |
H. F. Di, Y. D. Shang and X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67–73.
doi: 10.1016/j.aml.2016.08.013. |
[8] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124. |
[9] |
Y. Z. Han, Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity, Appl. Math. Lett., 99 (2020), 105986, 7pp.
doi: 10.1016/j.aml.2019.07.017. |
[10] |
S. M. Ji, J. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446–5464.
doi: 10.1016/j.jde.2016.08.017. |
[11] |
H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au + F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1–21.
doi: 10.2307/1996814. |
[12] |
Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181–3203.
doi: 10.1007/s00033-015-0558-2. |
[13] |
W. J. Liu and J. Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276–1283.
doi: 10.1016/j.jfa.2018.01.005. |
[14] |
Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687.
doi: 10.1016/j.na.2005.09.011. |
[15] |
P. Luo,
Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci., 38 (2015), 2636-2641.
doi: 10.1002/mma.3253. |
[16] |
M. Marras, S. V.-Piro and G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2291–2300.
doi: 10.3934/dcdsb.2017096. |
[17] |
V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Tran. Amer. Math. Soc., 356 (2004), 2739–2756.
doi: 10.1090/S0002-9947-03-03340-3. |
[18] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303.
doi: 10.1007/BF02761595. |
[19] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172.
doi: 10.1007/BF00250942. |
[20] |
R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26.
doi: 10.1137/0501001. |
[21] |
F. L. Sun, L. S. Liu and Y. H. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Comput. Math. Appl., 75 (2018), 3685–3701.
doi: 10.1016/j.camwa.2018.02.025. |
[22] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences., Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[23] |
T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1–26.
doi: 10.1007/BF00250690. |
[24] |
G. Y. Xu and J. Zhou, Lifespan for a semilinear pseudo-parabolic equation, Math. Methods Appl. Sci., 41 (2018), 705–713. |
[25] |
R. Z. Xu and Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Func. Anal., 264 (2013) 2732–2763] [ MR3045640], J. Funct. Anal., 270 (2016), 4039–4041.
doi: 10.1016/j.jfa.2016.02.026. |
[26] |
R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763.
doi: 10.1016/j.jfa.2013.03.010. |
[27] |
R. Z. Xu, X. C. Wang and Y. B. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181.
doi: 10.1016/j.aml.2018.03.033. |
[28] |
C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286–3303.
doi: 10.1016/j.jde.2012.09.001. |
[29] |
X. L. Zhu, F. Y. Li and Y. H. Li, Some sharp results about the global existence and blowup of solutions to a class of pseudo-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1311–1331.
doi: 10.1017/S0308210516000494. |
[1] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[2] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[3] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[4] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[5] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[6] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[7] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[8] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[9] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[10] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[11] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[12] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[13] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[14] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[15] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[16] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[17] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[18] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[19] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[20] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
Impact Factor: 0.263
Tools
Article outline
Figures and Tables
[Back to Top]