• Previous Article
    Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems
  • ERA Home
  • This Issue
  • Next Article
    The existence of solutions for a shear thinning compressible non-Newtonian models
March  2020, 28(1): 67-90. doi: 10.3934/era.2020005

Initial boundary value problem for a inhomogeneous pseudo-parabolic equation

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Jun Zhou

Received  September 2019 Revised  November 2019 Published  March 2020

Fund Project: The author is supported by NSF grant 11201380.

This paper deals with the global existence and blow-up of solutions to a inhomogeneous pseudo-parabolic equation with initial value $ u_0 $ in the Sobolev space $ H_0^1( \Omega) $, where $ \Omega\subset \mathbb{R}^n $ ($ n\geq1 $ is an integer) is a bounded domain. By using the mountain-pass level $ d $ (see (14)), the energy functional $ J $ (see (12)) and Nehari function $ I $ (see (13)), we decompose the space $ H_0^1( \Omega) $ into five parts, and in each part, we show the solutions exist globally or blow up in finite time. Furthermore, we study the decay rates for the global solutions and lifespan (i.e., the upper bound of blow-up time) of the blow-up solutions. Moreover, we give a blow-up result which does not depend on $ d $. By using this theorem, we prove the solution can blow up at arbitrary energy level, i.e. for any $ M\in \mathbb{R} $, there exists $ u_0\in H_0^1( \Omega) $ satisfying $ J(u_0) = M $ such that the corresponding solution blows up in finite time.

Citation: Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005
References:
[1]

G. BarenblatI. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.  doi: 10.1016/0021-8928(60)90107-6.  Google Scholar

[2]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47–78. doi: 10.1098/rsta.1972.0032.  Google Scholar

[3]

Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst., 36 (2016), 631–642. doi: 10.3934/dcds.2016.36.631.  Google Scholar

[4]

Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568–4590. doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[5]

Y. Cao, Z. Y. Wang and J. X. Yin., A semilinear pseudo-parabolic equation with initial data non-rarefied at $\infty$, J. Func. Anal., 277 (2019), 3737–3756. doi: 10.1016/j.jfa.2019.05.014.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.  Google Scholar

[7]

H. F. Di, Y. D. Shang and X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67–73. doi: 10.1016/j.aml.2016.08.013.  Google Scholar

[8]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124.  Google Scholar

[9]

Y. Z. Han, Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity, Appl. Math. Lett., 99 (2020), 105986, 7pp. doi: 10.1016/j.aml.2019.07.017.  Google Scholar

[10]

S. M. Ji, J. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446–5464. doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[11]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au + F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1–21. doi: 10.2307/1996814.  Google Scholar

[12]

Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181–3203. doi: 10.1007/s00033-015-0558-2.  Google Scholar

[13]

W. J. Liu and J. Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276–1283. doi: 10.1016/j.jfa.2018.01.005.  Google Scholar

[14]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. doi: 10.1016/j.na.2005.09.011.  Google Scholar

[15]

P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci., 38 (2015), 2636-2641.  doi: 10.1002/mma.3253.  Google Scholar

[16]

M. Marras, S. V.-Piro and G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2291–2300. doi: 10.3934/dcdsb.2017096.  Google Scholar

[17]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Tran. Amer. Math. Soc., 356 (2004), 2739–2756. doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[18]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. doi: 10.1007/BF02761595.  Google Scholar

[19]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172. doi: 10.1007/BF00250942.  Google Scholar

[20]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26. doi: 10.1137/0501001.  Google Scholar

[21]

F. L. Sun, L. S. Liu and Y. H. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Comput. Math. Appl., 75 (2018), 3685–3701. doi: 10.1016/j.camwa.2018.02.025.  Google Scholar

[22]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences., Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[23]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1–26. doi: 10.1007/BF00250690.  Google Scholar

[24]

G. Y. Xu and J. Zhou, Lifespan for a semilinear pseudo-parabolic equation, Math. Methods Appl. Sci., 41 (2018), 705–713.  Google Scholar

[25]

R. Z. Xu and Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Func. Anal., 264 (2013) 2732–2763] [ MR3045640], J. Funct. Anal., 270 (2016), 4039–4041. doi: 10.1016/j.jfa.2016.02.026.  Google Scholar

[26]

R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[27]

R. Z. Xu, X. C. Wang and Y. B. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181. doi: 10.1016/j.aml.2018.03.033.  Google Scholar

[28]

C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286–3303. doi: 10.1016/j.jde.2012.09.001.  Google Scholar

[29]

X. L. Zhu, F. Y. Li and Y. H. Li, Some sharp results about the global existence and blowup of solutions to a class of pseudo-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1311–1331. doi: 10.1017/S0308210516000494.  Google Scholar

show all references

References:
[1]

G. BarenblatI. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.  doi: 10.1016/0021-8928(60)90107-6.  Google Scholar

[2]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47–78. doi: 10.1098/rsta.1972.0032.  Google Scholar

[3]

Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst., 36 (2016), 631–642. doi: 10.3934/dcds.2016.36.631.  Google Scholar

[4]

Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568–4590. doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[5]

Y. Cao, Z. Y. Wang and J. X. Yin., A semilinear pseudo-parabolic equation with initial data non-rarefied at $\infty$, J. Func. Anal., 277 (2019), 3737–3756. doi: 10.1016/j.jfa.2019.05.014.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.  Google Scholar

[7]

H. F. Di, Y. D. Shang and X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67–73. doi: 10.1016/j.aml.2016.08.013.  Google Scholar

[8]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124.  Google Scholar

[9]

Y. Z. Han, Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity, Appl. Math. Lett., 99 (2020), 105986, 7pp. doi: 10.1016/j.aml.2019.07.017.  Google Scholar

[10]

S. M. Ji, J. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446–5464. doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[11]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au + F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1–21. doi: 10.2307/1996814.  Google Scholar

[12]

Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181–3203. doi: 10.1007/s00033-015-0558-2.  Google Scholar

[13]

W. J. Liu and J. Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276–1283. doi: 10.1016/j.jfa.2018.01.005.  Google Scholar

[14]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. doi: 10.1016/j.na.2005.09.011.  Google Scholar

[15]

P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci., 38 (2015), 2636-2641.  doi: 10.1002/mma.3253.  Google Scholar

[16]

M. Marras, S. V.-Piro and G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2291–2300. doi: 10.3934/dcdsb.2017096.  Google Scholar

[17]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Tran. Amer. Math. Soc., 356 (2004), 2739–2756. doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[18]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. doi: 10.1007/BF02761595.  Google Scholar

[19]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172. doi: 10.1007/BF00250942.  Google Scholar

[20]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26. doi: 10.1137/0501001.  Google Scholar

[21]

F. L. Sun, L. S. Liu and Y. H. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Comput. Math. Appl., 75 (2018), 3685–3701. doi: 10.1016/j.camwa.2018.02.025.  Google Scholar

[22]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences., Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[23]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1–26. doi: 10.1007/BF00250690.  Google Scholar

[24]

G. Y. Xu and J. Zhou, Lifespan for a semilinear pseudo-parabolic equation, Math. Methods Appl. Sci., 41 (2018), 705–713.  Google Scholar

[25]

R. Z. Xu and Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Func. Anal., 264 (2013) 2732–2763] [ MR3045640], J. Funct. Anal., 270 (2016), 4039–4041. doi: 10.1016/j.jfa.2016.02.026.  Google Scholar

[26]

R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[27]

R. Z. Xu, X. C. Wang and Y. B. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181. doi: 10.1016/j.aml.2018.03.033.  Google Scholar

[28]

C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286–3303. doi: 10.1016/j.jde.2012.09.001.  Google Scholar

[29]

X. L. Zhu, F. Y. Li and Y. H. Li, Some sharp results about the global existence and blowup of solutions to a class of pseudo-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1311–1331. doi: 10.1017/S0308210516000494.  Google Scholar

Figure 1.  The results for $ J(u_0)\leq d $
Figure 2.  The graphs of $ f $ and $ g $
[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[8]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[9]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[10]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[11]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[15]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[16]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[17]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[18]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[19]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[20]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]