March  2020, 28(1): 157-163. doi: 10.3934/era.2020010

Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (U.M.A.B.), B.P.227, 27000, Mostaganem, Algeria

* Corresponding author: Lakehal Belarbi

Received  October 2019 Revised  February 2020 Published  March 2020

In this work we consider the three-dimensional Lie group denoted by $ \mathbb{H}^{2} \times \mathbb{R} $, equipped with left-invariant Riemannian metric. The existence of non-trivial (i.e., not Einstein) Ricci solitons on three-dimensional Lie group $ \mathbb{H}^{2} \times \mathbb{R} $ is proved. Moreover, we show that there are not gradient Ricci solitons.

Citation: Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157-163. doi: 10.3934/era.2020010
References:
[1]

P. Baird and L. Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math., 608 (2007), 65-91.  doi: 10.1515/CRELLE.2007.053.  Google Scholar

[2]

W. Batat, Curvature properties and Ricci soliton of Lorentzian pr-waves manifolds, J. Geom. Phys., 75 (2014), 7-16.  doi: 10.1016/j.geomphys.2013.08.014.  Google Scholar

[3]

W. BatatM. Brozos-VazquezE. García-Río and S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull. Lond. Math. Soc., 43 (2011), 1219-1227.  doi: 10.1112/blms/bdr057.  Google Scholar

[4]

W. Batat and K. Onda, Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geom. Phys., 114 (2017), 138-152.  doi: 10.1016/j.geomphys.2016.11.018.  Google Scholar

[5]

L. Belarbi, On the symmetries of the $Sol_{3}$ Lie group, J. Korean Math. Soc., 57 (2020), 523-537.  doi: 10.4134/JKMS.j190198.  Google Scholar

[6]

M. Božek, Existence of generalized symmetric Riemannian spaces with solvable isometry group, Časopis Pěst. Mat., 105 (1980), 368–384.  Google Scholar

[7]

M. Brozos-VázquezG. CalvarusoE. García-Río and S. Gavino-Fernández, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math., 188 (2012), 385-403.  doi: 10.1007/s11856-011-0124-3.  Google Scholar

[8]

G. Calvaruso and B. De Leo, Ricci solitons on Lorentzian Walker three-manifolds, Acta Math. Hungar., 132 (2011), 269-293.  doi: 10.1007/s10474-010-0049-z.  Google Scholar

[9]

G. Calvaruso and A. Fino, Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces, Canad. J. Math., 64 (2012), 778-804.  doi: 10.4153/CJM-2011-091-1.  Google Scholar

[10]

G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons, Int. J. Geom. Methods Mod. Phys., 12 (2015), 21pp. doi: 10.1142/S0219887815500565.  Google Scholar

[11]

G. CalvarusoO. Kowalski and A. Marinosci, Homogeneous geodesics in solvable Lie groups, Acta. Math. Hungar., 101 (2003), 313-322.  doi: 10.1023/B:AMHU.0000004942.87374.0e.  Google Scholar

[12]

H. D. Cao, Recent progress on Ricci solitons, in Recent Advances in Geometric Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1-38.  Google Scholar

[13]

H. D. Cao, Geometry of complete gradient shrinking Ricci solitons, in Geometry and Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2011,227-246.  Google Scholar

[14]

L. F. Cerbo, Generic properties of homogeneous Ricci solitons, Adv. Geom., 14 (2014), 225-237.  doi: 10.1515/advgeom-2013-0031.  Google Scholar

[15]

D. Friedan, Nonlinear models in $2+$ $\varepsilon$ dimensions, Ann. Physics, 163 (1985), 318-419.  doi: 10.1016/0003-4916(85)90384-7.  Google Scholar

[16]

R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988,237–262. doi: 10.1090/conm/071/954419.  Google Scholar

[17]

R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geometry, 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar

[18]

S. Hervik, Ricci nilsoliton black holes, J. Geom. Phys., 58 (2008), 1253-1264.  doi: 10.1016/j.geomphys.2008.05.001.  Google Scholar

[19]

O. Kowalski, Generalized Symmetric Spaces, Lectures Notes in Mathematics, 805, Springer-Verlag, Berlin-New York, 1980. doi: 10.1007/BFb0103324.  Google Scholar

[20]

J. Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math., 650 (2011), 1-21.  doi: 10.1515/CRELLE.2011.001.  Google Scholar

[21]

A. Mostefaoui and L. Belarbi, On the symmetries of five-dimensional Solvable Lie group, J. Lie Theory, 30 (2020), 155-169.   Google Scholar

[22]

A. MostefaouiL. Belarbi and W. Batat, Ricci solitons of five-dimensional Solvable Lie group, PanAmer. Math J., 29 (2019), 1-16.   Google Scholar

[23]

K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata, 147 (2010), 313-322.  doi: 10.1007/s10711-009-9456-0.  Google Scholar

[24]

T. L. Payne, The existence of soliton metrics for nilpotent Lie groups, Geom. Dedicata, 145 (2010), 71-88.  doi: 10.1007/s10711-009-9404-z.  Google Scholar

show all references

References:
[1]

P. Baird and L. Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math., 608 (2007), 65-91.  doi: 10.1515/CRELLE.2007.053.  Google Scholar

[2]

W. Batat, Curvature properties and Ricci soliton of Lorentzian pr-waves manifolds, J. Geom. Phys., 75 (2014), 7-16.  doi: 10.1016/j.geomphys.2013.08.014.  Google Scholar

[3]

W. BatatM. Brozos-VazquezE. García-Río and S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull. Lond. Math. Soc., 43 (2011), 1219-1227.  doi: 10.1112/blms/bdr057.  Google Scholar

[4]

W. Batat and K. Onda, Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geom. Phys., 114 (2017), 138-152.  doi: 10.1016/j.geomphys.2016.11.018.  Google Scholar

[5]

L. Belarbi, On the symmetries of the $Sol_{3}$ Lie group, J. Korean Math. Soc., 57 (2020), 523-537.  doi: 10.4134/JKMS.j190198.  Google Scholar

[6]

M. Božek, Existence of generalized symmetric Riemannian spaces with solvable isometry group, Časopis Pěst. Mat., 105 (1980), 368–384.  Google Scholar

[7]

M. Brozos-VázquezG. CalvarusoE. García-Río and S. Gavino-Fernández, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math., 188 (2012), 385-403.  doi: 10.1007/s11856-011-0124-3.  Google Scholar

[8]

G. Calvaruso and B. De Leo, Ricci solitons on Lorentzian Walker three-manifolds, Acta Math. Hungar., 132 (2011), 269-293.  doi: 10.1007/s10474-010-0049-z.  Google Scholar

[9]

G. Calvaruso and A. Fino, Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces, Canad. J. Math., 64 (2012), 778-804.  doi: 10.4153/CJM-2011-091-1.  Google Scholar

[10]

G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons, Int. J. Geom. Methods Mod. Phys., 12 (2015), 21pp. doi: 10.1142/S0219887815500565.  Google Scholar

[11]

G. CalvarusoO. Kowalski and A. Marinosci, Homogeneous geodesics in solvable Lie groups, Acta. Math. Hungar., 101 (2003), 313-322.  doi: 10.1023/B:AMHU.0000004942.87374.0e.  Google Scholar

[12]

H. D. Cao, Recent progress on Ricci solitons, in Recent Advances in Geometric Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1-38.  Google Scholar

[13]

H. D. Cao, Geometry of complete gradient shrinking Ricci solitons, in Geometry and Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2011,227-246.  Google Scholar

[14]

L. F. Cerbo, Generic properties of homogeneous Ricci solitons, Adv. Geom., 14 (2014), 225-237.  doi: 10.1515/advgeom-2013-0031.  Google Scholar

[15]

D. Friedan, Nonlinear models in $2+$ $\varepsilon$ dimensions, Ann. Physics, 163 (1985), 318-419.  doi: 10.1016/0003-4916(85)90384-7.  Google Scholar

[16]

R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988,237–262. doi: 10.1090/conm/071/954419.  Google Scholar

[17]

R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geometry, 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar

[18]

S. Hervik, Ricci nilsoliton black holes, J. Geom. Phys., 58 (2008), 1253-1264.  doi: 10.1016/j.geomphys.2008.05.001.  Google Scholar

[19]

O. Kowalski, Generalized Symmetric Spaces, Lectures Notes in Mathematics, 805, Springer-Verlag, Berlin-New York, 1980. doi: 10.1007/BFb0103324.  Google Scholar

[20]

J. Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math., 650 (2011), 1-21.  doi: 10.1515/CRELLE.2011.001.  Google Scholar

[21]

A. Mostefaoui and L. Belarbi, On the symmetries of five-dimensional Solvable Lie group, J. Lie Theory, 30 (2020), 155-169.   Google Scholar

[22]

A. MostefaouiL. Belarbi and W. Batat, Ricci solitons of five-dimensional Solvable Lie group, PanAmer. Math J., 29 (2019), 1-16.   Google Scholar

[23]

K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata, 147 (2010), 313-322.  doi: 10.1007/s10711-009-9456-0.  Google Scholar

[24]

T. L. Payne, The existence of soliton metrics for nilpotent Lie groups, Geom. Dedicata, 145 (2010), 71-88.  doi: 10.1007/s10711-009-9404-z.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[2]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[3]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[4]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[5]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

 Impact Factor: 0.263

Metrics

  • PDF downloads (82)
  • HTML views (240)
  • Cited by (0)

Other articles
by authors

[Back to Top]