• Previous Article
    Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source
  • ERA Home
  • This Issue
  • Next Article
    A note on sign-changing solutions for the Schrödinger Poisson system
March  2020, 28(1): 205-220. doi: 10.3934/era.2020014

Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights

1. 

Department of Mathematics, Federal University of Bahia, Salvador, 40170-115, Bahia, Brazil

2. 

Department of Mathematics, Federal University of São João del-Rei, São João del-Rei, 36307-352, Minas Gerais, Brazil

* Corresponding author: raposo@ufsj.edu.br

Received  January 2020 Revised  February 2020

Fund Project: The first author was partially supported by FCT project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UID/MAT/00144/2019), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. The second author was partially supported by CAPES (Brazil)

We consider the wave equation with a weak internal damping with non-constant delay and nonlinear weights given by
$ \begin{eqnarray*} \label{NLS} u_{tt}(x,t) - u_{xx}(x,t)+\mu_1(t)u_t(x,t) +\mu_2(t)u_t(x,t-\tau(t)) = 0 \end{eqnarray*} $
in a bounded domain. Under proper conditions on nonlinear weights $ \mu_1(t), \mu_2(t) $ and non-constant delay $ \tau(t) $, we prove global existence and estimative the decay rate for the energy.
Citation: Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014
References:
[1]

F. A. Mehmeti, Nonlinear Waves in Networks, Vol. 80, Mathematical Research, Akademie-Verlag, Berlin, 1994.  Google Scholar

[2]

A. Benaissa, A. Benguessoum and S. A. Messaoudi, Energy decay of solutions for a wave equation with a constant weak delay and a weak internal feedback, Electron. J. Qual. Theory Differ. Equ., 11 (2014), 13 pp. doi: 10.14232/ejqtde.2014.1.11.  Google Scholar

[3]

F. Z. BenyoubM. Ferhat and A. Hakem, Global existence and asymptotic stability for a coupled viscoelastic wave equation with a time-varying delay term, Electron. J. Math. Anal. Appl., 6 (2018), 119-156.   Google Scholar

[4]

H. Brézis, Opérators Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York.  Google Scholar

[5]

G. Chen, Control and stabilization for the wave equation in a bounded domain, SIAM J. Control Optim., 17 (1979), 66-81.  doi: 10.1137/0317007.  Google Scholar

[6]

G. Chen, Control and stabilization for the wave equation in a bounded domain. Ⅱ, SIAM J. Control Optim., 19 (1981), 114-122.  doi: 10.1137/0319009.  Google Scholar

[7]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[8]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[9]

B. Feng and X.-G. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.  Google Scholar

[10]

B. Feng, Well-posedness and exponential decay for laminated Timoshenko beams with time delays and boundary feedbacks, Math. Methods Appl. Sci., 41 (2018), 1162-1174.  doi: 10.1002/mma.4655.  Google Scholar

[11]

M. Ferhat, Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 491-506.   Google Scholar

[12]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinity memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.  Google Scholar

[13]

A. Haraux, Two remarks on hyperbolic dissipative problems, Res. Notes in Math., 122 (1985), 161-179.   Google Scholar

[14]

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[15]

T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane, [Fermi Lectures], Scuola Normale Superiore, Pisa; Accademia NAzionale dei Lincei, Rome, 1985.  Google Scholar

[16]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[17]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0, \infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390.  doi: 10.1016/0022-0396(87)90025-8.  Google Scholar

[18]

G. Liu, Well-posedness and exponential decay of solutions for a transmission problem with distributed delay, Electron. J. Differential Equations, 174 (2017), 13 pp.  Google Scholar

[19]

W. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term, Taiwanese J. Math., 17 (2013), 2101-2115.  doi: 10.11650/tjm.17.2013.2968.  Google Scholar

[20]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[21]

M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl., 60 (1977), 542-549.  doi: 10.1016/0022-247X(77)90040-3.  Google Scholar

[22]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differential Equations, 41 (2011), 20 pp.  Google Scholar

[24]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations, 21 (2008), 935-958.   Google Scholar

[25]

S. NicaiseC. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 693-722.  doi: 10.3934/dcdss.2011.4.693.  Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

C. A. Raposo, H. Nguyen, J. O. Ribeiro and V. Barros, Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition, Electron. J. Differential Equations, 279 (2017), 11 pp.  Google Scholar

[28]

M. Remil and A. Hakem, Global existence and asymptotic behavior of solutions to the viscoelastic wave equation with a constant delay term, Facta Univ. Ser. Math. Inform, 32 (2017), 485-502.  doi: 10.1007/s11766-017-3280-3.  Google Scholar

[29]

F. Tahamtani and A. Peyravi, Asymptotic behavior and blow-up of solutions for a nonlinear viscoelastic wave equation with boundary dissipation, Taiwanese J. Math., 17 (2013), 1921-1943.  doi: 10.11650/tjm.17.2013.3034.  Google Scholar

[30]

A. A. Than and J. Wang, Stabilization of the cascaded ODE-Schrödinger equations subject to observation with time delay, IEEE/CAA J. Autom. Sin., 6 (2019), 1027-1035.  doi: 10.1109/JAS.2019.1911588.  Google Scholar

[31]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[32]

K.-Y. Yang and J.-M. Wang, Pointwise feedback stabilization of an Euler-Bernoulli beam in observations with time delay, ESAIM Control Optim. Calc. Var., 25 (2019), 23 pp. doi: 10.1051/cocv/2017080.  Google Scholar

show all references

References:
[1]

F. A. Mehmeti, Nonlinear Waves in Networks, Vol. 80, Mathematical Research, Akademie-Verlag, Berlin, 1994.  Google Scholar

[2]

A. Benaissa, A. Benguessoum and S. A. Messaoudi, Energy decay of solutions for a wave equation with a constant weak delay and a weak internal feedback, Electron. J. Qual. Theory Differ. Equ., 11 (2014), 13 pp. doi: 10.14232/ejqtde.2014.1.11.  Google Scholar

[3]

F. Z. BenyoubM. Ferhat and A. Hakem, Global existence and asymptotic stability for a coupled viscoelastic wave equation with a time-varying delay term, Electron. J. Math. Anal. Appl., 6 (2018), 119-156.   Google Scholar

[4]

H. Brézis, Opérators Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York.  Google Scholar

[5]

G. Chen, Control and stabilization for the wave equation in a bounded domain, SIAM J. Control Optim., 17 (1979), 66-81.  doi: 10.1137/0317007.  Google Scholar

[6]

G. Chen, Control and stabilization for the wave equation in a bounded domain. Ⅱ, SIAM J. Control Optim., 19 (1981), 114-122.  doi: 10.1137/0319009.  Google Scholar

[7]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[8]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[9]

B. Feng and X.-G. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.  Google Scholar

[10]

B. Feng, Well-posedness and exponential decay for laminated Timoshenko beams with time delays and boundary feedbacks, Math. Methods Appl. Sci., 41 (2018), 1162-1174.  doi: 10.1002/mma.4655.  Google Scholar

[11]

M. Ferhat, Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 491-506.   Google Scholar

[12]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinity memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.  Google Scholar

[13]

A. Haraux, Two remarks on hyperbolic dissipative problems, Res. Notes in Math., 122 (1985), 161-179.   Google Scholar

[14]

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[15]

T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane, [Fermi Lectures], Scuola Normale Superiore, Pisa; Accademia NAzionale dei Lincei, Rome, 1985.  Google Scholar

[16]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[17]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0, \infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390.  doi: 10.1016/0022-0396(87)90025-8.  Google Scholar

[18]

G. Liu, Well-posedness and exponential decay of solutions for a transmission problem with distributed delay, Electron. J. Differential Equations, 174 (2017), 13 pp.  Google Scholar

[19]

W. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term, Taiwanese J. Math., 17 (2013), 2101-2115.  doi: 10.11650/tjm.17.2013.2968.  Google Scholar

[20]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[21]

M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl., 60 (1977), 542-549.  doi: 10.1016/0022-247X(77)90040-3.  Google Scholar

[22]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differential Equations, 41 (2011), 20 pp.  Google Scholar

[24]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations, 21 (2008), 935-958.   Google Scholar

[25]

S. NicaiseC. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 693-722.  doi: 10.3934/dcdss.2011.4.693.  Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

C. A. Raposo, H. Nguyen, J. O. Ribeiro and V. Barros, Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition, Electron. J. Differential Equations, 279 (2017), 11 pp.  Google Scholar

[28]

M. Remil and A. Hakem, Global existence and asymptotic behavior of solutions to the viscoelastic wave equation with a constant delay term, Facta Univ. Ser. Math. Inform, 32 (2017), 485-502.  doi: 10.1007/s11766-017-3280-3.  Google Scholar

[29]

F. Tahamtani and A. Peyravi, Asymptotic behavior and blow-up of solutions for a nonlinear viscoelastic wave equation with boundary dissipation, Taiwanese J. Math., 17 (2013), 1921-1943.  doi: 10.11650/tjm.17.2013.3034.  Google Scholar

[30]

A. A. Than and J. Wang, Stabilization of the cascaded ODE-Schrödinger equations subject to observation with time delay, IEEE/CAA J. Autom. Sin., 6 (2019), 1027-1035.  doi: 10.1109/JAS.2019.1911588.  Google Scholar

[31]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[32]

K.-Y. Yang and J.-M. Wang, Pointwise feedback stabilization of an Euler-Bernoulli beam in observations with time delay, ESAIM Control Optim. Calc. Var., 25 (2019), 23 pp. doi: 10.1051/cocv/2017080.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[11]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[12]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[16]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[17]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[20]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

 Impact Factor: 0.263

Metrics

  • PDF downloads (107)
  • HTML views (196)
  • Cited by (0)

Other articles
by authors

[Back to Top]