• Previous Article
    Normalized solutions for Choquard equations with general nonlinearities
  • ERA Home
  • This Issue
  • Next Article
    Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source
March  2020, 28(1): 263-289. doi: 10.3934/era.2020016

The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term

College of Science, Henan University of Technology, Zhengzhou 450001, China

* Corresponding author: Gongwei Liu

Received  November 2019

Fund Project: The first author is supported by NSFC (No. 11801145), Key Scientific Research Foundation of the Higher Education Institutions of Henan Province, China (Grant No.19A110004 and the Fund of Young Backbone Teacher in Henan Province (NO. 2018GGJS068, 21420048)

In this paper, we consider a plate equation with nonlinear damping and logarithmic source term. By the contraction mapping principle, we establish the local existence. The global existence and decay estimate of the solution at subcritical initial energy are obtained. We also prove that the solution with negative initial energy blows up in finite time under suitable conditions. Moreover, we also give the blow-up in finite time of solution at the arbitrarily high initial energy for linear damping (i.e. $ m = 2 $).

Citation: Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016
References:
[1]

M. M. Al-Gharabli and S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18 (2018), 105-125.  doi: 10.1007/s00028-017-0392-4.  Google Scholar

[2]

M. M. Al-Gharabli and S. A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454 (2017), 1114-1128.  doi: 10.1016/j.jmaa.2017.05.030.  Google Scholar

[3]

M. M. Al-GharabliA. Guesmia and S. A. Messaoudi, Existence and a general decay results for a viscoelastic plate equation logarithmic nonlinearity, Commun. Pure Appl. Anal., 18 (2019), 159-180.  doi: 10.3934/cpaa.2019009.  Google Scholar

[4]

J. D. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.  doi: 10.1103/PhysRevD.52.5576.  Google Scholar

[5]

K. Bartkowski and P. Górka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A, 41 (2008), 355201, 11 pp. doi: 10.1088/1751-8113/41/35/355201.  Google Scholar

[6]

I. Białynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 23 (1975), 461-466.   Google Scholar

[7]

I. Białynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics, 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[8]

T. Cazenave and A. Haraux, Équations d'évolution avec non-linéarité logarithmique, Ann. Fac. Sci. Toulouse Math., 2 (1980), 21-51.  doi: 10.5802/afst.543.  Google Scholar

[9]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[10]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[11]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[12]

W. Chen and Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal., 70 (2009), 3203-3208.  doi: 10.1016/j.na.2008.04.024.  Google Scholar

[13]

K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Physics Letters B, 425 (1998), 309-321.  doi: 10.1016/S0370-2693(98)00271-8.  Google Scholar

[14]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[15]

P. Górka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[16]

P. GórkaH. Prado and E. G. Reyes, Nonlinear equations with infinitely many derivatives, Complex Anal. Oper. Theory, 5 (2011), 313-323.  doi: 10.1007/s11785-009-0043-z.  Google Scholar

[17]

X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275-283.  doi: 10.4134/BKMS.2013.50.1.275.  Google Scholar

[18]

Y. HeH. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[19]

T. Hiramatsu, M. Kawasaki and F. Takahashi, Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics, 2010 (2010), 008. Google Scholar

[20]

Q. HuH. Zhang and G. Liu, Asymptotic behavior for a class of logarithmic wave equations with linear damping, Appl. Math. Optim., 79 (2019), 131-144.  doi: 10.1007/s00245-017-9423-3.  Google Scholar

[21]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475-491.  doi: 10.32917/hmj/1206127254.  Google Scholar

[22]

M. Kafini and S. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal., 99 (2019), 530-547.  doi: 10.1080/00036811.2018.1504029.  Google Scholar

[23]

C. N. Le and X. T. Le, Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[24]

C. N. Le and X. T. Le, Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.  doi: 10.1016/j.camwa.2017.02.030.  Google Scholar

[25]

W. LianM. S. Ahmed and R. Xu, Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity, Nonlinear Anal., 184 (2019), 239-257.  doi: 10.1016/j.na.2019.02.015.  Google Scholar

[26]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[27]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[28]

W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, NoDEA Nonlinear Differential Equations Appl., 24 2017, Art. 67, 35 pp. doi: 10.1007/s00030-017-0491-5.  Google Scholar

[29]

Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[30]

Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.  doi: 10.3934/dcdsb.2007.7.171.  Google Scholar

[31]

S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296-308.  doi: 10.1006/jmaa.2001.7697.  Google Scholar

[32]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66.  doi: 10.1002/mana.200310104.  Google Scholar

[33]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.  doi: 10.2969/jmsj/03040747.  Google Scholar

[34]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[35]

A. Peyravi, General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memeory terms, Appl. Math. Optim., (2018). doi: 10.1007/s00245-018-9508-7.  Google Scholar

[36]

V. S. Vladimirov, The equation of the $p$-adic open string for the scalar tachyon field, Izv. Math., 69 (2005), 487-512.  doi: 10.1070/IM2005v069n03ABEH000536.  Google Scholar

[37]

S.-T. Wu and L.-Y. Tsai, On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 13 (2009), 545-558.  doi: 10.11650/twjm/1500405355.  Google Scholar

[38]

R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. doi: 10.1063/1.5006728.  Google Scholar

[39]

R. XuM. ZhangS. ChenY. Yang and J. Shen, The initial-boundary value problems for a class of sixth order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.  doi: 10.3934/dcds.2017244.  Google Scholar

[40]

H. ZhangG. Liu and Q. Hu, Exponential decay of energy for a logarithmic wave equation, J. Partial Differ. Equ., 28 (2015), 269-277.  doi: 10.4208/jpde.v28.n3.5.  Google Scholar

show all references

References:
[1]

M. M. Al-Gharabli and S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18 (2018), 105-125.  doi: 10.1007/s00028-017-0392-4.  Google Scholar

[2]

M. M. Al-Gharabli and S. A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454 (2017), 1114-1128.  doi: 10.1016/j.jmaa.2017.05.030.  Google Scholar

[3]

M. M. Al-GharabliA. Guesmia and S. A. Messaoudi, Existence and a general decay results for a viscoelastic plate equation logarithmic nonlinearity, Commun. Pure Appl. Anal., 18 (2019), 159-180.  doi: 10.3934/cpaa.2019009.  Google Scholar

[4]

J. D. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.  doi: 10.1103/PhysRevD.52.5576.  Google Scholar

[5]

K. Bartkowski and P. Górka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A, 41 (2008), 355201, 11 pp. doi: 10.1088/1751-8113/41/35/355201.  Google Scholar

[6]

I. Białynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 23 (1975), 461-466.   Google Scholar

[7]

I. Białynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics, 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[8]

T. Cazenave and A. Haraux, Équations d'évolution avec non-linéarité logarithmique, Ann. Fac. Sci. Toulouse Math., 2 (1980), 21-51.  doi: 10.5802/afst.543.  Google Scholar

[9]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[10]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[11]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[12]

W. Chen and Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal., 70 (2009), 3203-3208.  doi: 10.1016/j.na.2008.04.024.  Google Scholar

[13]

K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Physics Letters B, 425 (1998), 309-321.  doi: 10.1016/S0370-2693(98)00271-8.  Google Scholar

[14]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[15]

P. Górka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[16]

P. GórkaH. Prado and E. G. Reyes, Nonlinear equations with infinitely many derivatives, Complex Anal. Oper. Theory, 5 (2011), 313-323.  doi: 10.1007/s11785-009-0043-z.  Google Scholar

[17]

X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275-283.  doi: 10.4134/BKMS.2013.50.1.275.  Google Scholar

[18]

Y. HeH. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[19]

T. Hiramatsu, M. Kawasaki and F. Takahashi, Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics, 2010 (2010), 008. Google Scholar

[20]

Q. HuH. Zhang and G. Liu, Asymptotic behavior for a class of logarithmic wave equations with linear damping, Appl. Math. Optim., 79 (2019), 131-144.  doi: 10.1007/s00245-017-9423-3.  Google Scholar

[21]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475-491.  doi: 10.32917/hmj/1206127254.  Google Scholar

[22]

M. Kafini and S. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal., 99 (2019), 530-547.  doi: 10.1080/00036811.2018.1504029.  Google Scholar

[23]

C. N. Le and X. T. Le, Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[24]

C. N. Le and X. T. Le, Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.  doi: 10.1016/j.camwa.2017.02.030.  Google Scholar

[25]

W. LianM. S. Ahmed and R. Xu, Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity, Nonlinear Anal., 184 (2019), 239-257.  doi: 10.1016/j.na.2019.02.015.  Google Scholar

[26]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[27]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[28]

W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, NoDEA Nonlinear Differential Equations Appl., 24 2017, Art. 67, 35 pp. doi: 10.1007/s00030-017-0491-5.  Google Scholar

[29]

Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[30]

Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.  doi: 10.3934/dcdsb.2007.7.171.  Google Scholar

[31]

S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296-308.  doi: 10.1006/jmaa.2001.7697.  Google Scholar

[32]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66.  doi: 10.1002/mana.200310104.  Google Scholar

[33]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.  doi: 10.2969/jmsj/03040747.  Google Scholar

[34]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[35]

A. Peyravi, General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memeory terms, Appl. Math. Optim., (2018). doi: 10.1007/s00245-018-9508-7.  Google Scholar

[36]

V. S. Vladimirov, The equation of the $p$-adic open string for the scalar tachyon field, Izv. Math., 69 (2005), 487-512.  doi: 10.1070/IM2005v069n03ABEH000536.  Google Scholar

[37]

S.-T. Wu and L.-Y. Tsai, On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 13 (2009), 545-558.  doi: 10.11650/twjm/1500405355.  Google Scholar

[38]

R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. doi: 10.1063/1.5006728.  Google Scholar

[39]

R. XuM. ZhangS. ChenY. Yang and J. Shen, The initial-boundary value problems for a class of sixth order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.  doi: 10.3934/dcds.2017244.  Google Scholar

[40]

H. ZhangG. Liu and Q. Hu, Exponential decay of energy for a logarithmic wave equation, J. Partial Differ. Equ., 28 (2015), 269-277.  doi: 10.4208/jpde.v28.n3.5.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

 Impact Factor: 0.263

Metrics

  • PDF downloads (159)
  • HTML views (266)
  • Cited by (0)

Other articles
by authors

[Back to Top]