• Previous Article
    Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions
  • ERA Home
  • This Issue
  • Next Article
    Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition
March  2020, 28(1): 383-404. doi: 10.3934/era.2020022

Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system

1. 

College of Mathematics and Physics, Fujian Jiangxia University, Fuzhou 350108, China

2. 

College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Qishan Campus, Fuzhou 350117, China

* Corresponding author: Jianqing Chen

Received  December 2019 Published  March 2020

Fund Project: Lirong Huang is supported by NSF of Fujian (No. 2017J01549); Jianqing Chen is supported by NNSF of China (No. 11871152, 11671085)

This paper is concerned with the following Schrödinger-Poisson system
$ \begin{equation*} (P_\mu): -\Delta u +u + K(x)\phi u = |u|^{p-1}u + \mu h(x)u, \ -\Delta \phi = K(x) u^2, \ x\in\mathbb{R}^3, \end{equation*} $
where
$ p\in (3,5) $
,
$ K(x) $
and
$ h(x) $
are nonnegative functions, and
$ \mu $
is a positive parameter. Let
$ \mu_1 > 0 $
be an isolated first eigenvalue of the eigenvalue problem
$ -\Delta u + u = \mu h(x)u $
,
$ u\in H^1(\mathbb{R}^3) $
. As
$ 0<\mu\leq\mu_1 $
, we prove that
$ (P_{\mu}) $
has at least one nonnegative bound state with positive energy. As
$ \mu > \mu_1 $
, there is
$ \delta > 0 $
such that for any
$ \mu\in (\mu_1, \mu_1 + \delta) $
,
$ (P_\mu) $
has a nonnegative ground state
$ u_{0,\mu} $
with negative energy, and
$ u_{0,\mu^{(n)}}\to 0 $
in
$ H^1(\mathbb{R}^3) $
as
$ \mu^{(n)}\downarrow \mu_1 $
. Besides,
$ (P_\mu) $
has another nonnegative bound state
$ u_{2,\mu} $
with positive energy, and
$ u_{2,\mu^{(n)}}\to u_{\mu_1} $
in
$ H^1(\mathbb{R}^3) $
as
$ \mu^{(n)}\downarrow \mu_1 $
, where
$ u_{\mu_1} $
is a bound state of
$ (P_{\mu_1}) $
.
Citation: Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022
References:
[1]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1 (1993), no. 4,439–475. doi: 10.1007/BF01206962.  Google Scholar

[2]

A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.  doi: 10.1007/s00032-008-0094-z.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), no. 3,391–404. doi: 10.1142/S021919970800282X.  Google Scholar

[5]

J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, Inc., New York, 1984.  Google Scholar

[6]

A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 249 (2010), no. 7, 1746–1765. doi: 10.1016/j.jde.2010.07.007.  Google Scholar

[7]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), no. 1, 90–108. doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[8]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), no. 2,283–293. doi: 10.12775/TMNA.1998.019.  Google Scholar

[9]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), no. 4,409–420. doi: 10.1142/S0129055X02001168.  Google Scholar

[10]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), no. 3,486–490. doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[11]

G. Cerami and G. Vaira, Positive solution for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), no. 3,521–543. doi: 10.1016/j.jde.2009.06.017.  Google Scholar

[12]

J. Chen, Z. Wang and X. Zhang, Standing waves for nonlinear Schrödinger-Poisson equation with high frequency, Topol. Methods Nonlinear Anal., 45 (2015), no. 2,601–614. doi: 10.12775/TMNA.2015.028.  Google Scholar

[13]

G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), no. 2-3,417–423.  Google Scholar

[14]

D. G. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $R^N$, Calc. Var. Partial Differential Equations, 13 (2001), no. 2,159–189. doi: 10.1007/PL00009927.  Google Scholar

[15]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), no. 5,893–906. doi: 10.1017/S030821050000353X.  Google Scholar

[16]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), no. 3,307–322. doi: 10.1515/ans-2004-0305.  Google Scholar

[17]

T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), no. 1,321–342. doi: 10.1137/S0036141004442793.  Google Scholar

[18]

P. D'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), no. 2,177–192. doi: 10.1515/ans-2002-0205.  Google Scholar

[19]

P. D'Avenia, A. Pomponio and G. Vaira, Infinitely many positive solutions for a Schrödinger-Poisson system, Nonlinear Anal., 74 (2011), no. 16, 5705–5721. doi: 10.1016/j.na.2011.05.057.  Google Scholar

[20]

L. Huang, E. M. Rocha and J. Chen, Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Differential Equations, 255 (2013), no. 8, 2463–2483. doi: 10.1016/j.jde.2013.06.022.  Google Scholar

[21]

Y. Jiang and H.-S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), no. 3,582–608. doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[22]

G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 52 (2011), no. 5, 053505, 19 pp. doi: 10.1063/1.3585657.  Google Scholar

[23]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), no. 2,655–674. doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[24]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: Concentration around a sphere, Math. Model. Methods Appl. Sci., 15 (2005), no. 1,141–164. doi: 10.1142/S0218202505003939.  Google Scholar

[25]

J. Sun, H. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), no. 5, 3365–3380. doi: 10.1016/j.jde.2011.12.007.  Google Scholar

[26]

G. Vaira, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), no. 2,263–297. doi: 10.1007/s11587-011-0109-x.  Google Scholar

[27]

J. Wang, L. Tian, J. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $\mathbb{R}^3$, Calc. Var. Partial Differential Equations, 48 (2013), no. 1-2,243–273. doi: 10.1007/s00526-012-0548-6.  Google Scholar

[28]

M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[29]

Z. Wang and H.-S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^3$, Discrete Contin. Dyn. Syst., 18 (2007), no. 4,809–816. doi: 10.3934/dcds.2007.18.809.  Google Scholar

[30]

Z. Wang and H.-S. Zhou, Positive solutions for nonlinear Schrödinger equations with deepening potential well, J. Eur. Math. Soc., 11 (2009), no. 3,545–573. doi: 10.4171/JEMS/160.  Google Scholar

[31]

L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), no. 6, 2150–2164. doi: 10.1016/j.na.2008.02.116.  Google Scholar

show all references

References:
[1]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1 (1993), no. 4,439–475. doi: 10.1007/BF01206962.  Google Scholar

[2]

A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.  doi: 10.1007/s00032-008-0094-z.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), no. 3,391–404. doi: 10.1142/S021919970800282X.  Google Scholar

[5]

J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, Inc., New York, 1984.  Google Scholar

[6]

A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 249 (2010), no. 7, 1746–1765. doi: 10.1016/j.jde.2010.07.007.  Google Scholar

[7]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), no. 1, 90–108. doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[8]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), no. 2,283–293. doi: 10.12775/TMNA.1998.019.  Google Scholar

[9]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), no. 4,409–420. doi: 10.1142/S0129055X02001168.  Google Scholar

[10]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), no. 3,486–490. doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[11]

G. Cerami and G. Vaira, Positive solution for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), no. 3,521–543. doi: 10.1016/j.jde.2009.06.017.  Google Scholar

[12]

J. Chen, Z. Wang and X. Zhang, Standing waves for nonlinear Schrödinger-Poisson equation with high frequency, Topol. Methods Nonlinear Anal., 45 (2015), no. 2,601–614. doi: 10.12775/TMNA.2015.028.  Google Scholar

[13]

G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), no. 2-3,417–423.  Google Scholar

[14]

D. G. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $R^N$, Calc. Var. Partial Differential Equations, 13 (2001), no. 2,159–189. doi: 10.1007/PL00009927.  Google Scholar

[15]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), no. 5,893–906. doi: 10.1017/S030821050000353X.  Google Scholar

[16]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), no. 3,307–322. doi: 10.1515/ans-2004-0305.  Google Scholar

[17]

T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), no. 1,321–342. doi: 10.1137/S0036141004442793.  Google Scholar

[18]

P. D'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), no. 2,177–192. doi: 10.1515/ans-2002-0205.  Google Scholar

[19]

P. D'Avenia, A. Pomponio and G. Vaira, Infinitely many positive solutions for a Schrödinger-Poisson system, Nonlinear Anal., 74 (2011), no. 16, 5705–5721. doi: 10.1016/j.na.2011.05.057.  Google Scholar

[20]

L. Huang, E. M. Rocha and J. Chen, Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Differential Equations, 255 (2013), no. 8, 2463–2483. doi: 10.1016/j.jde.2013.06.022.  Google Scholar

[21]

Y. Jiang and H.-S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), no. 3,582–608. doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[22]

G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 52 (2011), no. 5, 053505, 19 pp. doi: 10.1063/1.3585657.  Google Scholar

[23]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), no. 2,655–674. doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[24]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: Concentration around a sphere, Math. Model. Methods Appl. Sci., 15 (2005), no. 1,141–164. doi: 10.1142/S0218202505003939.  Google Scholar

[25]

J. Sun, H. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), no. 5, 3365–3380. doi: 10.1016/j.jde.2011.12.007.  Google Scholar

[26]

G. Vaira, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), no. 2,263–297. doi: 10.1007/s11587-011-0109-x.  Google Scholar

[27]

J. Wang, L. Tian, J. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $\mathbb{R}^3$, Calc. Var. Partial Differential Equations, 48 (2013), no. 1-2,243–273. doi: 10.1007/s00526-012-0548-6.  Google Scholar

[28]

M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[29]

Z. Wang and H.-S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^3$, Discrete Contin. Dyn. Syst., 18 (2007), no. 4,809–816. doi: 10.3934/dcds.2007.18.809.  Google Scholar

[30]

Z. Wang and H.-S. Zhou, Positive solutions for nonlinear Schrödinger equations with deepening potential well, J. Eur. Math. Soc., 11 (2009), no. 3,545–573. doi: 10.4171/JEMS/160.  Google Scholar

[31]

L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), no. 6, 2150–2164. doi: 10.1016/j.na.2008.02.116.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[4]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

 Impact Factor: 0.263

Metrics

  • PDF downloads (86)
  • HTML views (185)
  • Cited by (0)

Other articles
by authors

[Back to Top]