• Previous Article
    New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory
  • ERA Home
  • This Issue
  • Next Article
    Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions
March  2020, 28(1): 423-432. doi: 10.3934/era.2020024

On the mutual singularity of multifractal measures

Analysis, Probability and Fractals Laboratory LR18ES17, Faculty of Sciences of Monastir, Department of Mathematics, 5019-Monastir, Tunisia

* Corresponding author: Zied Douzi

Received  February 2020 Revised  February 2020 Published  March 2020

The aim of this article is to show that the multifractal Hausdorff and packing measures are mutually singular, which in particular provides an answer to Olsen's questions.

Citation: Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024
References:
[1]

N. Attia and B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc., 34 (2019), 213-230.  doi: 10.4134/CKMS.c180030.  Google Scholar

[2]

N. Attia and B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, Journal of Geometric Analysis, (2019). doi: 10.1007/s12220-019-00302-3.  Google Scholar

[3]

F. Ben NasrI. Bhouri and Y. Heurteaux, The validity of the multifractal formalism: results and examples, Adv. in Math, 165 (2002), 264-284.  doi: 10.1006/aima.2001.2025.  Google Scholar

[4]

M. Das, Pointwise Local Dimensions, Ph.D. Thesis, The Ohio State University, 1996.  Google Scholar

[5]

M. Das, Hausdorff measures, dimensions and mutual singularity, Trans. Amer. Math. Soc., 357 (2005), 4249-4268.  doi: 10.1090/S0002-9947-05-04031-6.  Google Scholar

[6]

L. Olsen, A multifractal formalism, Adv. in Math., 116 (1995), 82-196.  doi: 10.1006/aima.1995.1066.  Google Scholar

[7]

M. Wu, The singularity spectrum $f(\alpha)$ of some Moranfractals, Monatsh Math., 144 (2005), 141-155.  doi: 10.1007/s00605-004-0254-3.  Google Scholar

[8]

W. Zhiying and W. Zhixiong, Sequences of substitutions and related topics, Adv Math (China)., 18 (1989), 270-293.   Google Scholar

show all references

References:
[1]

N. Attia and B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc., 34 (2019), 213-230.  doi: 10.4134/CKMS.c180030.  Google Scholar

[2]

N. Attia and B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, Journal of Geometric Analysis, (2019). doi: 10.1007/s12220-019-00302-3.  Google Scholar

[3]

F. Ben NasrI. Bhouri and Y. Heurteaux, The validity of the multifractal formalism: results and examples, Adv. in Math, 165 (2002), 264-284.  doi: 10.1006/aima.2001.2025.  Google Scholar

[4]

M. Das, Pointwise Local Dimensions, Ph.D. Thesis, The Ohio State University, 1996.  Google Scholar

[5]

M. Das, Hausdorff measures, dimensions and mutual singularity, Trans. Amer. Math. Soc., 357 (2005), 4249-4268.  doi: 10.1090/S0002-9947-05-04031-6.  Google Scholar

[6]

L. Olsen, A multifractal formalism, Adv. in Math., 116 (1995), 82-196.  doi: 10.1006/aima.1995.1066.  Google Scholar

[7]

M. Wu, The singularity spectrum $f(\alpha)$ of some Moranfractals, Monatsh Math., 144 (2005), 141-155.  doi: 10.1007/s00605-004-0254-3.  Google Scholar

[8]

W. Zhiying and W. Zhixiong, Sequences of substitutions and related topics, Adv Math (China)., 18 (1989), 270-293.   Google Scholar

[1]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[2]

Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006

[3]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[4]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3781-3796. doi: 10.3934/dcds.2021016

[5]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[6]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[7]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[8]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381

[9]

Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021058

[10]

Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021003

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[13]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[14]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[15]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[16]

Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033

[17]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[19]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[20]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

 Impact Factor: 0.263

Metrics

  • PDF downloads (109)
  • HTML views (273)
  • Cited by (3)

Other articles
by authors

[Back to Top]