• Previous Article
    Generalizations of some ordinary and extreme connectedness properties of topological spaces to relator spaces
  • ERA Home
  • This Issue
  • Next Article
    New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory
March  2020, 28(1): 459-469. doi: 10.3934/era.2020026

The digital smash product

Department of Mathematics, Ege University, Bornova, 35100, Izmir, Turkey

* Corresponding author: ozgur.ege@ege.edu.tr

Received  November 2019 Published  March 2020

In this paper, we construct the smash product from the digital viewpoint and prove some its properties such as associativity, distributivity, and commutativity. Moreover, we present the digital suspension and the digital cone for an arbitrary digital image and give some examples of these new concepts.

Citation: Ismet Cinar, Ozgur Ege, Ismet Karaca. The digital smash product. Electronic Research Archive, 2020, 28 (1) : 459-469. doi: 10.3934/era.2020026
References:
[1]

L. Boxer, Digitally continuous functions, Pattern Recogn. Lett., 15 (1994), 833-839.  doi: 10.1016/0167-8655(94)90012-4.  Google Scholar

[2]

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10 (1999), 51-62.  doi: 10.1023/A:1008370600456.  Google Scholar

[3]

L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis., 22 (2005), 19-26.  doi: 10.1007/s10851-005-4780-y.  Google Scholar

[4]

L. Boxer, Digital products, wedges and covering spaces, J. Math. Imaging Vis., 25 (2006), 159-171.  doi: 10.1007/s10851-006-9698-5.  Google Scholar

[5]

L. Boxer, Digital shy maps, Appl. Gen. Topol., 18 (2017), 143-152.  doi: 10.4995/agt.2017.6663.  Google Scholar

[6]

L. Boxer and I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci., 11 (2012), 161-179.   Google Scholar

[7]

L. BoxerI. Karaca and A. Oztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl., 11 (2011), 109-140.   Google Scholar

[8]

I. Cinar and I. Karaca, Some new results on connected sum of certain digital surfaces, Malaya J. Matematik, 7 (2019), 318-325.  doi: 10.26637/MJM0702/0027.  Google Scholar

[9]

O. Ege and I. Karaca, Fundamental properties of simplicial homology groups for digital images, Amer. J. Comput. Tech. Appl., 1 (2013), 25-42.   Google Scholar

[10]

O. Ege and I. Karaca, Cohomology theory for digital images, Rom. J. Inf. Sci. Tech., 16 (2013), 10-28.   Google Scholar

[11]

O. Ege and I. Karaca, Digital cohomology operations, Appl. Math. Inform. Sci., 9 (2015), 1953-1960.  doi: 10.12785/amis.  Google Scholar

[12]

O. Ege and I. Karaca, Digital fibrations, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 87 (2017), 109-114.  doi: 10.1007/s40010-016-0302-0.  Google Scholar

[13]

O. EgeI. Karaca and M. Erden Ege, Relative homology groups of digital images, Appl. Math. Inform. Sci., 8 (2014), 2337-2345.  doi: 10.12785/amis/080529.  Google Scholar

[14]

G. T. Herman, Oriented surfaces in digital spaces, CVGIP. Graph Model Im. Proc., 55 (1993), 381-396.  doi: 10.1006/cgip.1993.1029.  Google Scholar

[15]

I. Karaca and I. Cinar, The cohomology structure of digital Khalimsky spaces, Rom. J. Math. Comput. Sci., 8 (2018), 110-128.   Google Scholar

[16]

I. Karaca and O. Ege, Some results on simplicial homology groups of 2D digital images, Int. J. Inform. Comput. Sci., 1 (2012), 198-203.   Google Scholar

[17]

T. Y. KongR. Kopperman and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98 (1991), 901-917.  doi: 10.1080/00029890.1991.12000810.  Google Scholar

[18]

T. Y. Kong and A. Rosenfeld, Digital topology, introduction and survey, Comput. Vision Graphics Image Process., 48 (1989), 357-393.   Google Scholar

[19]

R. KoppermanP. R. Meyer and R. G. Wilson, A Jordan surface theorem for three dimensional digital spaces, Discrete Comput. Geom., 6 (1991), 155-161.  doi: 10.1007/BF02574681.  Google Scholar

[20]

V. A. Kovalevsky, Finite topology as applied to image analysis, Comput. Vision Graphics Image Process., 46 (1989), 141-161.   Google Scholar

[21]

A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 621-630.  doi: 10.1080/00029890.1979.11994873.  Google Scholar

[22]

A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177-184.   Google Scholar

show all references

References:
[1]

L. Boxer, Digitally continuous functions, Pattern Recogn. Lett., 15 (1994), 833-839.  doi: 10.1016/0167-8655(94)90012-4.  Google Scholar

[2]

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10 (1999), 51-62.  doi: 10.1023/A:1008370600456.  Google Scholar

[3]

L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis., 22 (2005), 19-26.  doi: 10.1007/s10851-005-4780-y.  Google Scholar

[4]

L. Boxer, Digital products, wedges and covering spaces, J. Math. Imaging Vis., 25 (2006), 159-171.  doi: 10.1007/s10851-006-9698-5.  Google Scholar

[5]

L. Boxer, Digital shy maps, Appl. Gen. Topol., 18 (2017), 143-152.  doi: 10.4995/agt.2017.6663.  Google Scholar

[6]

L. Boxer and I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci., 11 (2012), 161-179.   Google Scholar

[7]

L. BoxerI. Karaca and A. Oztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl., 11 (2011), 109-140.   Google Scholar

[8]

I. Cinar and I. Karaca, Some new results on connected sum of certain digital surfaces, Malaya J. Matematik, 7 (2019), 318-325.  doi: 10.26637/MJM0702/0027.  Google Scholar

[9]

O. Ege and I. Karaca, Fundamental properties of simplicial homology groups for digital images, Amer. J. Comput. Tech. Appl., 1 (2013), 25-42.   Google Scholar

[10]

O. Ege and I. Karaca, Cohomology theory for digital images, Rom. J. Inf. Sci. Tech., 16 (2013), 10-28.   Google Scholar

[11]

O. Ege and I. Karaca, Digital cohomology operations, Appl. Math. Inform. Sci., 9 (2015), 1953-1960.  doi: 10.12785/amis.  Google Scholar

[12]

O. Ege and I. Karaca, Digital fibrations, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 87 (2017), 109-114.  doi: 10.1007/s40010-016-0302-0.  Google Scholar

[13]

O. EgeI. Karaca and M. Erden Ege, Relative homology groups of digital images, Appl. Math. Inform. Sci., 8 (2014), 2337-2345.  doi: 10.12785/amis/080529.  Google Scholar

[14]

G. T. Herman, Oriented surfaces in digital spaces, CVGIP. Graph Model Im. Proc., 55 (1993), 381-396.  doi: 10.1006/cgip.1993.1029.  Google Scholar

[15]

I. Karaca and I. Cinar, The cohomology structure of digital Khalimsky spaces, Rom. J. Math. Comput. Sci., 8 (2018), 110-128.   Google Scholar

[16]

I. Karaca and O. Ege, Some results on simplicial homology groups of 2D digital images, Int. J. Inform. Comput. Sci., 1 (2012), 198-203.   Google Scholar

[17]

T. Y. KongR. Kopperman and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98 (1991), 901-917.  doi: 10.1080/00029890.1991.12000810.  Google Scholar

[18]

T. Y. Kong and A. Rosenfeld, Digital topology, introduction and survey, Comput. Vision Graphics Image Process., 48 (1989), 357-393.   Google Scholar

[19]

R. KoppermanP. R. Meyer and R. G. Wilson, A Jordan surface theorem for three dimensional digital spaces, Discrete Comput. Geom., 6 (1991), 155-161.  doi: 10.1007/BF02574681.  Google Scholar

[20]

V. A. Kovalevsky, Finite topology as applied to image analysis, Comput. Vision Graphics Image Process., 46 (1989), 141-161.   Google Scholar

[21]

A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 621-630.  doi: 10.1080/00029890.1979.11994873.  Google Scholar

[22]

A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177-184.   Google Scholar

Figure 1.  $ 2 $-adjacency in $ \mathbb{Z} $
Figure 2.  $ 4 $ and $ 8 $ adjacencies in $ \mathbb{Z}^2 $
Figure 3.  $ 6 $, $ 18 $ and $ 26 $ adjacencies in $ \mathbb{Z}^3 $
Figure 4.  Digital $ 0- $sphere $ S_0 $ and digital $ 1 $-sphere $ S_1 $
Figure 5.  $ S_1\times S_0 $ and $ S_1\wedge S_0 $
Figure 6.  $ S_0\times I $ and $ S_0\wedge I $
[1]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[2]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098

[3]

Lizhong Peng, Shujun Dang, Bojin Zhuang. Localization operator and digital communication capacity of channel. Communications on Pure & Applied Analysis, 2007, 6 (3) : 819-827. doi: 10.3934/cpaa.2007.6.819

[4]

Hiroyuki Torikai. Basic spike-train properties of a digital spiking neuron. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 183-198. doi: 10.3934/dcdsb.2008.9.183

[5]

Ahmad Jazlan, Umair Zulfiqar, Victor Sreeram, Deepak Kumar, Roberto Togneri, Hasan Firdaus Mohd Zaki. Frequency interval model reduction of complex fir digital filters. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 319-326. doi: 10.3934/naco.2019021

[6]

Hiroaki Uchida, Yuya Oishi, Toshimichi Saito. A simple digital spiking neural network: Synchronization and spike-train approximation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020374

[7]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[8]

Gábor Domokos, Domokos Szász. Ulam's scheme revisited: digital modeling of chaotic attractors via micro-perturbations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 859-876. doi: 10.3934/dcds.2003.9.859

[9]

Chien Hsun Tseng. Analytical modeling of laminated composite plates using Kirchhoff circuit and wave digital filters. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2213-2252. doi: 10.3934/jimo.2019051

[10]

Ivana Bochicchio, Claudio Giorgi, Elena Vuk. On the viscoelastic coupled suspension bridge. Evolution Equations & Control Theory, 2014, 3 (3) : 373-397. doi: 10.3934/eect.2014.3.373

[11]

P. J. McKenna. Oscillations in suspension bridges, vertical and torsional. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 785-791. doi: 10.3934/dcdss.2014.7.785

[12]

Elvise Berchio, Filippo Gazzola. The role of aerodynamic forces in a mathematical model for suspension bridges. Conference Publications, 2015, 2015 (special) : 112-121. doi: 10.3934/proc.2015.0112

[13]

Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879

[14]

Jianlu Zhang. Suspension of the billiard maps in the Lazutkin's coordinate. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2227-2242. doi: 10.3934/dcds.2017096

[15]

Jon Aaronson, Omri Sarig, Rita Solomyak. Tail-invariant measures for some suspension semiflows. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 725-735. doi: 10.3934/dcds.2002.8.725

[16]

Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465

[17]

Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257

[18]

Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial & Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269

[19]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[20]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (104)
  • HTML views (219)
  • Cited by (0)

Other articles
by authors

[Back to Top]