• Previous Article
    Generalizations of some ordinary and extreme connectedness properties of topological spaces to relator spaces
  • ERA Home
  • This Issue
  • Next Article
    New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory
March  2020, 28(1): 459-469. doi: 10.3934/era.2020026

The digital smash product

Department of Mathematics, Ege University, Bornova, 35100, Izmir, Turkey

* Corresponding author: ozgur.ege@ege.edu.tr

Received  November 2019 Published  March 2020

In this paper, we construct the smash product from the digital viewpoint and prove some its properties such as associativity, distributivity, and commutativity. Moreover, we present the digital suspension and the digital cone for an arbitrary digital image and give some examples of these new concepts.

Citation: Ismet Cinar, Ozgur Ege, Ismet Karaca. The digital smash product. Electronic Research Archive, 2020, 28 (1) : 459-469. doi: 10.3934/era.2020026
References:
[1]

L. Boxer, Digitally continuous functions, Pattern Recogn. Lett., 15 (1994), 833-839.  doi: 10.1016/0167-8655(94)90012-4.  Google Scholar

[2]

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10 (1999), 51-62.  doi: 10.1023/A:1008370600456.  Google Scholar

[3]

L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis., 22 (2005), 19-26.  doi: 10.1007/s10851-005-4780-y.  Google Scholar

[4]

L. Boxer, Digital products, wedges and covering spaces, J. Math. Imaging Vis., 25 (2006), 159-171.  doi: 10.1007/s10851-006-9698-5.  Google Scholar

[5]

L. Boxer, Digital shy maps, Appl. Gen. Topol., 18 (2017), 143-152.  doi: 10.4995/agt.2017.6663.  Google Scholar

[6]

L. Boxer and I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci., 11 (2012), 161-179.   Google Scholar

[7]

L. BoxerI. Karaca and A. Oztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl., 11 (2011), 109-140.   Google Scholar

[8]

I. Cinar and I. Karaca, Some new results on connected sum of certain digital surfaces, Malaya J. Matematik, 7 (2019), 318-325.  doi: 10.26637/MJM0702/0027.  Google Scholar

[9]

O. Ege and I. Karaca, Fundamental properties of simplicial homology groups for digital images, Amer. J. Comput. Tech. Appl., 1 (2013), 25-42.   Google Scholar

[10]

O. Ege and I. Karaca, Cohomology theory for digital images, Rom. J. Inf. Sci. Tech., 16 (2013), 10-28.   Google Scholar

[11]

O. Ege and I. Karaca, Digital cohomology operations, Appl. Math. Inform. Sci., 9 (2015), 1953-1960.  doi: 10.12785/amis.  Google Scholar

[12]

O. Ege and I. Karaca, Digital fibrations, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 87 (2017), 109-114.  doi: 10.1007/s40010-016-0302-0.  Google Scholar

[13]

O. EgeI. Karaca and M. Erden Ege, Relative homology groups of digital images, Appl. Math. Inform. Sci., 8 (2014), 2337-2345.  doi: 10.12785/amis/080529.  Google Scholar

[14]

G. T. Herman, Oriented surfaces in digital spaces, CVGIP. Graph Model Im. Proc., 55 (1993), 381-396.  doi: 10.1006/cgip.1993.1029.  Google Scholar

[15]

I. Karaca and I. Cinar, The cohomology structure of digital Khalimsky spaces, Rom. J. Math. Comput. Sci., 8 (2018), 110-128.   Google Scholar

[16]

I. Karaca and O. Ege, Some results on simplicial homology groups of 2D digital images, Int. J. Inform. Comput. Sci., 1 (2012), 198-203.   Google Scholar

[17]

T. Y. KongR. Kopperman and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98 (1991), 901-917.  doi: 10.1080/00029890.1991.12000810.  Google Scholar

[18]

T. Y. Kong and A. Rosenfeld, Digital topology, introduction and survey, Comput. Vision Graphics Image Process., 48 (1989), 357-393.   Google Scholar

[19]

R. KoppermanP. R. Meyer and R. G. Wilson, A Jordan surface theorem for three dimensional digital spaces, Discrete Comput. Geom., 6 (1991), 155-161.  doi: 10.1007/BF02574681.  Google Scholar

[20]

V. A. Kovalevsky, Finite topology as applied to image analysis, Comput. Vision Graphics Image Process., 46 (1989), 141-161.   Google Scholar

[21]

A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 621-630.  doi: 10.1080/00029890.1979.11994873.  Google Scholar

[22]

A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177-184.   Google Scholar

show all references

References:
[1]

L. Boxer, Digitally continuous functions, Pattern Recogn. Lett., 15 (1994), 833-839.  doi: 10.1016/0167-8655(94)90012-4.  Google Scholar

[2]

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10 (1999), 51-62.  doi: 10.1023/A:1008370600456.  Google Scholar

[3]

L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis., 22 (2005), 19-26.  doi: 10.1007/s10851-005-4780-y.  Google Scholar

[4]

L. Boxer, Digital products, wedges and covering spaces, J. Math. Imaging Vis., 25 (2006), 159-171.  doi: 10.1007/s10851-006-9698-5.  Google Scholar

[5]

L. Boxer, Digital shy maps, Appl. Gen. Topol., 18 (2017), 143-152.  doi: 10.4995/agt.2017.6663.  Google Scholar

[6]

L. Boxer and I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci., 11 (2012), 161-179.   Google Scholar

[7]

L. BoxerI. Karaca and A. Oztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl., 11 (2011), 109-140.   Google Scholar

[8]

I. Cinar and I. Karaca, Some new results on connected sum of certain digital surfaces, Malaya J. Matematik, 7 (2019), 318-325.  doi: 10.26637/MJM0702/0027.  Google Scholar

[9]

O. Ege and I. Karaca, Fundamental properties of simplicial homology groups for digital images, Amer. J. Comput. Tech. Appl., 1 (2013), 25-42.   Google Scholar

[10]

O. Ege and I. Karaca, Cohomology theory for digital images, Rom. J. Inf. Sci. Tech., 16 (2013), 10-28.   Google Scholar

[11]

O. Ege and I. Karaca, Digital cohomology operations, Appl. Math. Inform. Sci., 9 (2015), 1953-1960.  doi: 10.12785/amis.  Google Scholar

[12]

O. Ege and I. Karaca, Digital fibrations, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 87 (2017), 109-114.  doi: 10.1007/s40010-016-0302-0.  Google Scholar

[13]

O. EgeI. Karaca and M. Erden Ege, Relative homology groups of digital images, Appl. Math. Inform. Sci., 8 (2014), 2337-2345.  doi: 10.12785/amis/080529.  Google Scholar

[14]

G. T. Herman, Oriented surfaces in digital spaces, CVGIP. Graph Model Im. Proc., 55 (1993), 381-396.  doi: 10.1006/cgip.1993.1029.  Google Scholar

[15]

I. Karaca and I. Cinar, The cohomology structure of digital Khalimsky spaces, Rom. J. Math. Comput. Sci., 8 (2018), 110-128.   Google Scholar

[16]

I. Karaca and O. Ege, Some results on simplicial homology groups of 2D digital images, Int. J. Inform. Comput. Sci., 1 (2012), 198-203.   Google Scholar

[17]

T. Y. KongR. Kopperman and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98 (1991), 901-917.  doi: 10.1080/00029890.1991.12000810.  Google Scholar

[18]

T. Y. Kong and A. Rosenfeld, Digital topology, introduction and survey, Comput. Vision Graphics Image Process., 48 (1989), 357-393.   Google Scholar

[19]

R. KoppermanP. R. Meyer and R. G. Wilson, A Jordan surface theorem for three dimensional digital spaces, Discrete Comput. Geom., 6 (1991), 155-161.  doi: 10.1007/BF02574681.  Google Scholar

[20]

V. A. Kovalevsky, Finite topology as applied to image analysis, Comput. Vision Graphics Image Process., 46 (1989), 141-161.   Google Scholar

[21]

A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 621-630.  doi: 10.1080/00029890.1979.11994873.  Google Scholar

[22]

A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177-184.   Google Scholar

Figure 1.  $ 2 $-adjacency in $ \mathbb{Z} $
Figure 2.  $ 4 $ and $ 8 $ adjacencies in $ \mathbb{Z}^2 $
Figure 3.  $ 6 $, $ 18 $ and $ 26 $ adjacencies in $ \mathbb{Z}^3 $
Figure 4.  Digital $ 0- $sphere $ S_0 $ and digital $ 1 $-sphere $ S_1 $
Figure 5.  $ S_1\times S_0 $ and $ S_1\wedge S_0 $
Figure 6.  $ S_0\times I $ and $ S_0\wedge I $
[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[3]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[4]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[5]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[8]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[9]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[10]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[13]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[14]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[15]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[16]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[17]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[18]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[19]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[20]

Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]