-
Previous Article
Existence of best proximity points satisfying two constraint inequalities
- ERA Home
- This Issue
-
Next Article
The digital smash product
Generalizations of some ordinary and extreme connectedness properties of topological spaces to relator spaces
Institute of Mathematics, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary |
Motivated by some ordinary and extreme connectedness properties of topologies, we introduce several reasonable connectedness properties of relators (families of relations). Moreover, we establish some intimate connections among these properties.
More concretely, we investigate relationships among various minimalness (well-chainedness), connectedness, hyper- and ultra-connectedness, door, superset, submaximality and resolvability properties of relators.
Since most generalized topologies and all proper stacks (ascending systems) can be derived from preorder relators, the results obtained greatly extends some standard results on topologies. Moreover, they are also closely related to some former results on well-chained and connected uniformities.
References:
[1] |
M. E. Adams, K. Belaid, L. Diri and O. Echi,
Submaximal and spectral spaces, Math. Proc. Royal Irish Acad., 108 (2008), 137-147.
doi: 10.3318/PRIA.2008.108.2.137. |
[2] |
B. Ahmad and T. Noiri,
The inverse images of hyperconnected sets, Mat. Vesn., 37 (1985), 177-181.
|
[3] |
N. Ajmal and J. K. Kohli,
Properties of hyperconnected spaces, their mappings into Hausdorff spaces and embeddings into hyperconnected spaces, Acta Math. Hung., 60 (1992), 41-49.
doi: 10.1007/BF00051755. |
[4] |
P. Alexandroff,
Zur Begründung der $n$-dimensionalen mengentheorischen Topologie, Math. Ann., 94 (1925), 296-308.
doi: 10.1007/BF01208660. |
[5] |
D. R. Anderson,
On connected irresolvable Hausdorff spaces, Proc. Amer. Math. Soc., 16 (1965), 463-466.
doi: 10.2307/2034674. |
[6] |
A. V. Arhangelskij and P. J. Collins,
On submaximal spaces, Topology Appl., 64 (1995), 219-241.
doi: 10.1016/0166-8641(94)00093-I. |
[7] |
D. Baboolal, H. L. Bentley and R. G. Ori,
Connection properties in nearness spaces, Canad. Math. Bull., 28 (1985), 212-217.
doi: 10.4153/CMB-1985-024-5. |
[8] |
D. Baboolal and R. G. Ori,
On uniform connecedness in nearness spaces, Math. Japonica, 42 (1995), 279-282.
|
[9] |
A. P. D. Balan and R. M. S. Sundary, Door spaces on generalized topology, Int. J. Comput. Sci. Math., 6 (2014), 69-75. Google Scholar |
[10] |
K. Belaid, L. Dridi and O. Echi,
Submaximal and door compactifications, Topology Appl, 158 (2011), 1969-1975.
doi: 10.1016/j.topol.2011.06.039. |
[11] |
S. S. Benchalli, B. M. Ittanagi and R. S. Wali, On minimal open sets and maps in topological spaces, J. Comp. Math. Sci., 2 (2011), 208-220. Google Scholar |
[12] |
K. Bhavani and D. Sivaraj,
On $\frak{T}$-hyperconnected spaces, Bull. Allahabad Math. Soc., 29 (2014), 15-25.
|
[13] |
G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, Providence, RI, 1967. Google Scholar |
[14] |
T. S. Blyth and M. F. Janowitz, Residuation Theory, Pergamon Press, Oxford, 1972.
![]() |
[15] |
M. Bognár,
On some variants of connectedness, Acta Math. Hungar., 79 (1998), 117-122.
doi: 10.1023/A:1006561806310. |
[16] |
C. R. Borges,
Hyperconnectivity of hyperspaces, Math. Japon., 30 (1985), 757-761.
|
[17] |
M. K. Bose and R. Tiwari,
$(\omega)$topological connectedness and hyperconnectedness, Note Mat., 31 (2011), 93-101.
|
[18] |
N. Bourbaki, General Topology, Chap 1–4, Springer-Verlag, Berlin, 1989. |
[19] |
N. Bourbaki, Éléments de Mathématique, Algébre Commutative, Chap. 1–4, Springer, Berlin, 2006. Google Scholar |
[20] |
S. Buglyó and Á. Száz,
A more important Galois connection between distance functions and inequality relations, Sci. Ser. A Math. Sci. (N.S.), 18 (2009), 17-38.
|
[21] |
G. Cantor,
Über unedliche, linearen Punktmannigfaltigkeiten, Math. Ann., 21 (1983), 545-591.
doi: 10.1007/BF01446819. |
[22] |
E. Čech, Topological Spaces, Academia, Prague, 1966. Google Scholar |
[23] |
C. Chattopadhyay,
Debse sets, nowhere dense sets and an ideal in generalized closure spaces, Mat. Vesnik, 59 (2007), 181-188.
|
[24] |
A. R. Choudhury, A. Mukharjee and M. K. Bose,
Hyperconnectedness and extremal disconnectedness in $(\alpha)$topological spaces, Hacet. J. Math. Stat., 44 (2015), 289-294.
|
[25] |
P. J. Collins,
On uiform connection properties, Amer. Math. Monthly, 78 (1971), 372-374.
doi: 10.1080/00029890.1971.11992762. |
[26] |
W. W. Comfort and S. Garcia-Ferreira,
Resolvability: A selective survey and some new results, Topology Appl., 74 (1996), 149-167.
doi: 10.1016/S0166-8641(96)00052-1. |
[27] |
Á. Császár, Foundations of General Topology, Pergamon Press, London, 1963.
![]() |
[28] |
Á. Császár, General Topology, Adam Hilger, Bristol, 1978. |
[29] |
Á. Császár,
$\gamma$-connected sets, Acta Math. Hungar., 101 (2003), 273-279.
doi: 10.1023/B:AMHU.0000004939.57085.9e. |
[30] |
Á. Császár,
Extremally disconnected generalized topologies, Ann. Univ. Sci Budapest, 47 (2004), 91-96.
|
[31] |
Á. Császár and R. Z. Domiaty,
Fine quasi-uniformities, Ann. Univ. Budapest, 22/23 (1979/1980), 151-158.
|
[32] |
Curtis, D. W. and Mathews, J. C., Generalized uniformities for pairs of spaces, Topology Conference, Arizona State University, Tempe, Arizona, 1967,212–246. |
[33] |
B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511809088.![]() ![]() |
[34] |
A. S. Davis,
Indexed systems of neighbordoods for general topological spaces, Amer. Math. Monthly, 68 (1961), 886-894.
doi: 10.1080/00029890.1961.11989785. |
[35] |
J. Deák,
A counterexample on completeness in relator spaces, Publ. Math. Debrecen, 41 (1992), 307-309.
|
[36] |
K. Denecke, M. Erné and S. L. Wismath (Eds.), Galois Connections and Applications, Kluwer Academic Publisher, Dordrecht, 2004. Google Scholar |
[37] |
D. Doičinov, A unified theory of topological spaces, proximity spaces and uniform spaces, Dokl. Acad. Nauk SSSR, 156 (1964), 21–24. (Russian) |
[38] |
J. Dontchev,
On superconnected spaces, Serdica, 20 (1994), 345-350.
|
[39] |
J. Dontchev,
On door spaces, Indian J. Pure Appl. Math., 26 (1995), 873-881.
|
[40] |
J. Dontchev,
On submaximal spaces, Tamkang J. Math., 26 (1995), 243-250.
|
[41] |
J. Dontchev, M. Ganster, G. J. Kennedy and S. D. McCartan,
On minimal door, minimal anti-compact and minimal $T_{3/4}$–spaces, Math. Proc. Royal Irish Acad., 98 (1998), 209-215.
|
[42] |
J. Dontchev, M. Ganster and D. Rose,
Ideal resolvability, Topology Appl., 93 (1999), 1-16.
doi: 10.1016/S0166-8641(97)00257-5. |
[43] |
E. K. van Douwen,
Applications of maximal topologies, Top. Appl., 51 (1993), 125-139.
doi: 10.1016/0166-8641(93)90145-4. |
[44] |
L. Dridi, S. Lazaar and T. Turki,
$F$-door spaces and $F$-submaximal spaces, Appl. Gen. Topol., 14 (2013), 97-113.
doi: 10.4995/agt.2013.1621. |
[45] |
Z. Duszyński,
On some concepts of weak connectedness of topological spaces, Acta Math. Hungar., 110 (2006), 81-90.
doi: 10.1007/s10474-006-0008-x. |
[46] |
V. A. Efremovič, The geometry of proximity, Mat. Sb., 31 (1952), 189–200. (Russian) |
[47] |
V. A. Efremović and A. S. Švarc, A new definition of uniform spaces. Metrization of proximity spaces, Dokl. Acad. Nauk. SSSR, 89 (1953), 393–396. (Russian) |
[48] |
E. Ekici,
Generalized hyperconnectedness, Acta Math. Hungar., 133 (2011), 140-147.
doi: 10.1007/s10474-011-0086-2. |
[49] |
E. Ekici,
Generalized submaximal spaces, Acta Math. Hungar., 134 (2012), 132-138.
doi: 10.1007/s10474-011-0109-z. |
[50] |
E. Ekici and T. Noiri,
Connectedness in ideal topological spaces, Novi Sad J. Math., 38 (2008), 65-70.
|
[51] |
E. Ekici and T. Noiri,
*-hyperconnected ideal topological spaces, An. Stiint. Univ. Al. I. Cuza Iasi, 58 (2012), 121-129.
|
[52] |
R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977. |
[53] |
U. V. Fattech and D. Singh,
Some results on locally hyperconnected spaces, Ann. Soc. Sci. Bruxelles, Sér. I, 97 (1983), 3-9.
|
[54] |
U. V. Fattech and D. Singh, A note on $D$-spaces, Bull. Calcutta Math. Soc., 75 (1983), 363–368. |
[55] |
P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982. |
[56] |
G. B. Folland,
A tale of topology, Amer. Math. Monthly, 117 (2010), 663-672.
doi: 10.4169/000298910x515730. |
[57] |
S. A. Gaal, Point Set Topology, Academic Press, New York, 1964.
![]() |
[58] |
M. Ganster,
Preopen sets and resolvable spaces, Kyungpook Math. J., 27 (1987), 135-143.
|
[59] |
B. Ganter and R. Wille, Formal Concept Analysis, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-642-59830-2. |
[60] |
M. Ganster, I. L. Reilly and M. K. Vamanamurthy,
Dense sets and irresolvable spaces, Ricerche Mat., 36 (1987), 163-170.
|
[61] |
B. Garai and C. Bandyopadhyay,
Nowhere dense sets and hyperconnected $s$-topological spaces, Bull. Cal. Math. Soc., 92 (2000), 55-58.
|
[62] |
B. Garai and C. Bandyopadhyay,
On parirwise hyperconnected spaces, Soochow J. Math., 27 (2001), 391-399.
|
[63] |
B. Garai and C. Bandyopadhyay,
On irresolvable spaces, Bull. Cal. Math. Soc., 95 (2003), 107-112.
|
[64] |
G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980. |
[65] |
T. Glavosits,
Generated preorders and equivalences, Acta Acad. Paed. Agrienses, Sect. Math., 29 (2002), 95-103.
|
[66] |
T. Glavosits,
Preorders and equivalences generated by commuting relations, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 18 (2002), 53-56.
|
[67] |
R. G. D. Gnanam, Generalized hyper connected space in bigeneralized topological space, Int. J. Math. Trends Technology, 47 (2017), 27-103. Google Scholar |
[68] |
S. W. Golomb,
A connected topology for the integers, Amer. Math. Monthly, 66 (1959), 663-665.
doi: 10.1080/00029890.1959.11989385. |
[69] |
V. Gregori and J. Ferrer,
Quasi-metrization and completion for Pervin's quasi-uniformity, Stohastica, 6 (1982), 151-156.
|
[70] |
J. A. Guthrie, D. F. Reynolds and and H. E. Stone,
Connected expansions of topologies, Bull. Austral. Math. Soc., 9 (1973), 259-265.
doi: 10.1017/S000497270004315X. |
[71] |
F. Hausdorff, Grundzüge der Mengenlehre, (German) Chelsea Publishing Company, New York, N. Y., 1949. |
[72] |
H. Herrlich,
Topological Structeres, Math. Centre Tracts, 52 (1974), 59-122.
|
[73] |
E. Hewitt,
A problem of set-theoretic topology, Duke Math. J, 10 (1943), 309-333.
doi: 10.1215/S0012-7094-43-01029-4. |
[74] |
W. Hunsaker and W. Lindgren,
Construction of quasi-uniformities, Math. Ann., 188 (1970), 39-42.
doi: 10.1007/BF01435413. |
[75] |
A. Illanes,
Finite and $\omega$-resolvability, Proc. Amer. Math. Soc., 124 (1996), 1243-1246.
doi: 10.1090/S0002-9939-96-03348-5. |
[76] |
J. R. Isbell, Uniform Spaces, Amer. Math. Soc., Providence, 1964. Google Scholar |
[77] |
S. Jafari and T. Noiri,
Properties of $\beta$-connected spaces, Acta Math. Hungar., 101 (2003), 227-236.
doi: 10.1023/B:AMHU.0000003907.90823.79. |
[78] |
I. M. James, Topological and Uniform Structures, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4716-6. |
[79] |
A. Kalapodi,
Examples on irresolvability, Scientiae Math. Japon., 76 (2013), 461-469.
|
[80] |
J. L. Kelley, General Topology, Van Nostrand Reinhold Company, New York, 1955. |
[81] |
H. Kenyon,
Two theorems on relations, Trans. Amer. Math. Soc., 107 (1963), 1-9.
doi: 10.1090/S0002-9947-1963-0148590-2. |
[82] |
E. Khalimsky, R. Kopperman and P. R. Meyer,
Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36 (1990), 1-17.
doi: 10.1016/0166-8641(90)90031-V. |
[83] |
H. J. Kowalsky, Topologische Räumen, Birkhäuser, Basel, 1960. Google Scholar |
[84] |
M. K. R. S. V. Kumar,
Hyperconnected type spaces, Acta Cienc. Indica Math., 31 (2005), 273-275.
|
[85] |
K. Kuratowski, Topologie I, Revised and augmented eddition: Topology I, Academic Press, New York, 1966.
![]() |
[86] |
J. Kurdics, A note on connection properties, Acta Math. Acad. Paedagog. Nyházi., 12, (1990), 57–59. Google Scholar |
[87] |
J. Kurdics, Connected and Well-Chained Relator Spaces, Doctoral Dissertation, Lajos Kossuth University, Debrecen, 1991, 30 pp. (Hungarian) Google Scholar |
[88] |
J. Kurdics, J. Mala and Á. Száz,
Connectedness and well-chainedness properties of symmetric covering relators, Pure Math. Appl., 2 (1991), 189-197.
|
[89] |
J. Kurdics and Á. Száz,
Connected relator spaces, Publ. Math. Debrecen, 40 (1992), 155-164.
|
[90] |
J. Kurdics and Á. Száz, Well-chained relator spaces, Kyungpook Math. J., 32 (1992), 263–271. |
[91] |
J. Kurdics and Á. Száz,
Well-chainedness characterizations of connected relators, Math. Pannon., 4 (1993), 37-45.
|
[92] |
R. E. Larson, Minimum and maximum topological spaces, Bull. Acad. Polon., 18 (1970), 707–710. |
[93] |
S. W. Lee, M. A. Moon and M. H. Cho,
On submaximal and quasi-submaximal spaces, Honam Math. J., 32 (2010), 643-649.
doi: 10.5831/HMJ.2010.32.4.643. |
[94] |
J. E. Leuschen and B. T. Sims,
Stronger forms of connectivity, Rend. Circ. Mat. Palermo, 21 (1972), 255-266.
doi: 10.1007/BF02843790. |
[95] |
N. Levine,
Strongly connected sets in topology, Amer. Math. Monthly, 72 (1965), 1098-1101.
doi: 10.2307/2315958. |
[96] |
N. Levine, The superset topology, Amer. Math. Monthly, 75 (1968), 745-746. Google Scholar |
[97] |
N. Levine,
Dense topologies, Amer. Math. Monthly, 75 (1968), 847-852.
doi: 10.1080/00029890.1968.11971077. |
[98] |
N. Levine,
On uniformities generated by equivalence relations, Rend. Circ. Mat. Palermo, 18 (1969), 62-70.
doi: 10.1007/BF02888946. |
[99] |
N. Levine,
On Pervin's quasi uniformity, Math. J. Okayama Univ., 14 (1970), 97-102.
|
[100] |
N. Levine,
Well-chained uniformities, Kyungpook Math. J., 11 (1971), 143-149.
|
[101] |
N. Levine,
The finite square semi-uniformity, Kyungpook Math. J., 13 (1973), 179-184.
|
[102] |
S. N. Maheswari and U. Tapi,
Connectedness of a stronger type in topological spaces, Nanta Math., 12 (1979), 102-109.
|
[103] |
R. A. Mahmoud and D. A. Rose,
A note on spaces via dense sets, Tamkang J. Math., 24 (1993), 333-339.
|
[104] |
R. A. Mahmoud and D. A. Rose,
A note on submaximal spaces and SMPC functions, Demonstratio Math., 28 (1995), 567-573.
|
[105] |
J. Mala,
An equation for families of relations, Pure Math. Apll., Ser. B, 1 (1990), 185-188.
|
[106] |
J. Mala, Relator Spaces, Doctoral Dissertation, Lajos Kossuth University, Debrecen, 1990, 48 pp. (Hungarian) Google Scholar |
[107] |
J. Mala,
Relators generating the same generalized topology, Acta Math. Hungar., 60 (1992), 291-297.
doi: 10.1007/BF00051647. |
[108] |
J. Mala,
Finitely generated quasi-proximities, Period. Math. Hungar., 35 (1997), 193-197.
doi: 10.1023/A:1004553417107. |
[109] |
J. Mala,
On proximal properties of proper symmetrizations of relators, Publ. Math. Debrecen, 58 (2001), 1-7.
|
[110] |
J. Mala and Á. Száz,
Equations for families of relations can also be solved, C. R. Math. Rep. Acad. Sci. Canada, 12 (1990), 109-112.
|
[111] |
J. Mala and Á. Száz,
Properly topologically conjugated relators, Pure Math. Appl., Ser. B, 3 (1992), 119-136.
|
[112] |
J. Mala and Á. Száz,
Modifications of relators, Acta Math. Hungar., 77 (1997), 69-81.
doi: 10.1023/A:1006583622770. |
[113] |
Z. P. Mamuzić, Introduction to General Topology, Noordhoff, Groningen, 1963. |
[114] |
J. C. Mathews,
A note on well-chained spaces, Amer. Math. Monthly, 75 (1968), 273-275.
doi: 10.2307/2314959. |
[115] |
P. M. Mathew, On hyperconnected spaces, Indian J. Pure Appl. Math., 19 (1988), 1180–1184. |
[116] |
P. M. Mathew,
On ultraconnected spaces, Int. J. Math. Sci., 13 (1990), 349-352.
doi: 10.1155/S0161171290000515. |
[117] |
J. C. Mathews,
A note on well-chained spaces, Amer. Math. Monthly, 75 (1968), 273-275.
doi: 10.2307/2314959. |
[118] |
S. D. McCartan,
Door spaces are identifiable, Proc. Roy. Irish Acad., 87A (1987), 13-16.
|
[119] |
S. Modak,
Relativization in resolvability and irresolvability, Int. Math. Forum, 6 (2011), 1059-1064.
|
[120] |
S. G. Mrówka and W. J. Pervin,
On uniform connectedness, Proc. Amer. Mth. Soc., 15 (1964), 446-449.
doi: 10.1090/S0002-9939-1964-0161307-7. |
[121] |
Á. Münnich and Á. Száz,
An alternative theorem for continuous relations and its applications, Publ. Inst. Math. (Beograd), 33 (1983), 163-168.
|
[122] |
M. G. Murdeshwar and S. A. Naimpally, Quasi-Uniform Topological Spaces, Noordhoff, Groningen, 1966. |
[123] |
L. Nachbin, Topology and Order, D. Van Nostrand, Princeton, 1965. |
[124] |
S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press, Cambridge, 1970.
![]() |
[125] |
H. Nakano and K. Nakano,
Connector theory, Pacific J. Math., 56 (1975), 195-213.
doi: 10.2140/pjm.1975.56.195. |
[126] |
G. Navalagi, M. L. Thivagar, R. R. Rajeswari and S. A. Ponmani,
On $(1, 2)\alpha$-hyperconnected spaces, Int. J. Math. Anal., 3 (2006), 121-129.
|
[127] |
T. Nieminen,
On ultrapseudocompact and related spaces, Ann. Acad. Sci. Fennicae, 3 (1977), 185-205.
doi: 10.5186/aasfm.1977.0321. |
[128] |
T. Noiri,
A note on hyperconnected sets, Mat. Vesnik, 3 (1979), 53-60.
|
[129] |
T. Noiri,
Functions which preserve hyperconnected spaces, Rev. Roum. Math. Pures Appl., 25 (1980), 1091-1094.
|
[130] |
T. Noiri,
Hyperconnectedness and preopen sets, Rev. Roum. Math. Pures Appl., 29 (1984), 329-334.
|
[131] |
T. Noiri,
Properties of hyperconnected spaces, Acta Math. Hungar., 66 (1995), 147-154.
doi: 10.1007/BF01874359. |
[132] |
K. Padmavally,
An example of a connected irresolvable Hausdorff space, Duke Math. J., 20 (1953), 513-520.
doi: 10.1215/S0012-7094-53-02050-X. |
[133] |
W. Page, Topological Uniform Structures, John Wiley and Sons Inc, New York, 1978. |
[134] |
G. Pataki, Supplementary notes to the theory of simple relators, Radovi Mat., 9 (1999), 101–118. |
[135] |
G. Pataki,
On the extensions, refinements and modifications of relators, Math. Balk., 15 (2001), 155-186.
|
[136] |
G. Pataki, Well-chained, Connected and Simple Relators, Ph.D Dissertation, Debrecen, 2004. Google Scholar |
[137] |
G. Pataki and Á. Száz,
A unified treatment of well-chainedness and connectedness properties, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 19 (2003), 101-165.
|
[138] |
W. J. Pervin,
Uniformizations of neighborhood axioms, Math. Ann., 147 (1962), 313-315.
doi: 10.1007/BF01440952. |
[139] |
W. J. Pervin,
Quasi-uniformization of topological spaces, Math. Ann., 147 (1962), 316-317.
doi: 10.1007/BF01440953. |
[140] |
W. J. Pervin,
Quasi-proximities for topological spaces, Math. Ann., 150 (1963), 325-326.
doi: 10.1007/BF01470761. |
[141] |
W. J. Pervin,
Connectedness in bitopological spaces, Indag. Math., 29 (1967), 369-372.
|
[142] |
V. Pipitone and G. Russo,
Spazi semiconnessi e spazi semiaperty, Rend. Circ. Mat. Palermo, 24 (1975), 273-285.
doi: 10.1007/BF02843735. |
[143] |
Cs. Rakaczki and Á. Száz,
Semicontinuity and closedness properties of relations in relator spaces, Mathematica (Cluj), 45 (2003), 73-92.
|
[144] |
D. Rendi and B. Rendi, On relative $n$-connectedness, The 7th Symposium of Mathematics and Applications, "Politehnica" University of Timisoara, Romania, 1997,304–308. Google Scholar |
[145] |
V. Renukadevi,
On generalizations of hyperconnected spaces, J. Adv. Res. Pure Math., 4 (2012), 46-58.
|
[146] |
V. Renukadevi,
Remarks on generalized hypperconnectedness, Acta Math. Hung., 136 (2012), 157-164.
doi: 10.1007/s10474-011-0192-1. |
[147] |
F. Riesz, Die Genesis der Raumbegriffs, Math. Naturwiss. Ber. Ungarn, 24 (1907), 309-353. Google Scholar |
[148] |
F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti Ⅳ Congr. Intern.Mat., Roma, Ⅱ (1908), 18-24. Google Scholar |
[149] |
D. Rose, K. Sizemore and B. Thurston, Strongly irresolvable spaces, International Journal of Mathematics and Mathematical Sciences, 2006 (2006), Art. ID 53653, 12 pp.
doi: 10.1155/IJMMS/2006/53653. |
[150] |
H. M. Salih, On door spaces, Journal of College of Education, Al-Mustansnyah University, Bagdad, Iraq, 3 (2006), 112–117. Google Scholar |
[151] |
J. Schröder,
On sub-, pseeudo- and quasimaximalspaces, Comm. Math. Univ. Carolinae, 39 (1998), 197-206.
|
[152] |
J. Schröder,
Some answers concerning submaximal spaces, Questions and Answers in General Topology, 17 (1999), 221-225.
|
[153] |
A. K. Sharma,
On some properties of hyperconnected spaces, Mat. Vesnik, 14 (1977), 25-27.
|
[154] |
R.-X. Shen,
A note on generalized connectedness, Acta Math. Hungar., 122 (2009), 231-235.
doi: 10.1007/s10474-008-8009-6. |
[155] |
J. L. Sieber and W. J. Pervin,
Connectedness in syntopogeneous spaces, Proc. Amer. Math. Soc., 15 (1964), 590-595.
doi: 10.1090/S0002-9939-1964-0166747-8. |
[156] |
W. Sierpinski, General Topology, Mathematical Expositions, 7, University of Toronto Press, Toronto, 1952. |
[157] |
Yu. M. Smirnov, On proximity spaces, Math. Sb., 31 (1952), 543–574. (Russian.) |
[158] |
L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1970. |
[159] |
A. K. Steiner,
The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc., 122 (1966), 379-398.
doi: 10.1090/S0002-9947-1966-0190893-2. |
[160] |
Gy. Szabó and Á. Száz,
Defining nets for integration, Publ. Math. Debrecen, 36 (1989), 237-252.
|
[161] |
Á. Száz, Coherences instead of convergences, Proc. Conf. Convergence and Generalized Functions (Katowice, Poland, 1983), Polish Acad Sci., Warsaw, 1984,141–148. Google Scholar |
[162] |
Á. Száz,
Basic tools and mild continuities in relator spaces, Acta Math. Hungar., 50 (1987), 177-201.
doi: 10.1007/BF01903935. |
[163] |
Á. Száz, Directed, topological and transitive relators, Publ. Math. Debrecen, 35 (1988), 179–196. |
[164] |
Á. Száz,
Projective and inductive generations of relator spaces, Acta Math. Hungar., 53 (1989), 407-430.
doi: 10.1007/BF01953378. |
[165] |
Á. Száz,
Lebesgue relators, Monatsh. Math., 110 (1990), 315-319.
doi: 10.1007/BF01301684. |
[166] |
Á. Száz, The fat and dense sets are more important than the open and closed ones, Abstracts of the Seventh Prague Topological Symposium, Inst. Math. Czechoslovak Acad. Sci., 1991, p106. Google Scholar |
[167] |
Á. Száz, Relators, Nets and Integrals, Unfinished doctoral thesis, Debrecen, 1991. Google Scholar |
[168] |
Á. Száz,
Inverse and symmetric relators, Acta Math. Hungar., 60 (1992), 157-176.
doi: 10.1007/BF00051766. |
[169] |
Á. Száz, Structures derivable from relators, Singularité, 3 (1992), 14-30. Google Scholar |
[170] |
Á. Száz, Refinements of relators, Tech. Rep., Inst. Math., Univ. Debrecen, 76 (1993), 19 pp. Google Scholar |
[171] |
Á. Száz,
Cauchy nets and completeness in relator spaces, Colloq. Math. Soc. János Bolyai, 55 (1993), 479-489.
|
[172] |
Á. Száz,
Neighbourhood relators, Bolyai Soc. Math. Stud., 4 (1995), 449-465.
|
[173] |
Á. Száz,
Relations refining and dividing each other, Pure Math. Appl. Ser. B, 6 (1995), 385-394.
|
[174] |
Á. Száz, Connectednesses of refined relators, Tech. Rep., Inst. Math., Univ. Debrecen, 1996, 6 pp. Google Scholar |
[175] |
Á. Száz,
Topological characterizations of relational properties, Grazer Math. Ber., 327 (1996), 37-52.
|
[176] |
Á. Száz,
Uniformly, proximally and topologically compact relators, Math. Pannon., 8 (1997), 103-116.
|
[177] |
Á. Száz,
An extension of Kelley's closed relation theorem to relator spaces, Filomat, 14 (2000), 49-71.
|
[178] |
Á. Száz,
Somewhat continuity in a unified framework for continuities of relations, Tatra Mt. Math. Publ., 24 (2002), 41-56.
|
[179] |
Á. Száz,
A Galois connection between distance functions and inequality relations, Math. Bohem., 127 (2002), 437-448.
|
[180] |
Á. Száz,
Upper and lower bounds in relator spaces, Serdica Math. J., 29 (2003), 239-270.
|
[181] |
Á. Száz,
An extension of Baire's category theorem to relator spaces, Math. Morav., 7 (2003), 73-89.
doi: 10.5937/matmor0307073s. |
[182] |
Á. Száz,
Rare and meager sets in relator spaces, Tatra Mt. Math. Publ., 28 (2004), 75-95.
|
[183] |
Á. Száz, Galois-type connections on power sets and their applications to relators, Tech. Rep., Inst. Math., Univ. Debrecen, 2 (2005), 38 pp. Google Scholar |
[184] |
Á. Száz,
Supremum properties of Galois–type connections, Comment. Math. Univ. Carolin., 47 (2006), 569-583.
|
[185] |
Á. Száz,
Minimal structures, generalized topologies, and ascending systems should not be studied without generalized uniformities, Filomat, 21 (2007), 87-97.
doi: 10.2298/FIL0701087S. |
[186] |
Á. Száz, Applications of fat and dense sets in the theory of additive functions, Tech. Rep., Inst. Math., Univ. Debrecen, 2007/3, 29 pp. Google Scholar |
[187] |
Á. Száz,
Galois type connections and closure operations on preordered sets, Acta Math. Univ. Comen., 78 (2009), 1-21.
|
[188] |
Á. Száz, Applications of relations and relators in the extensions of stability theorems for homogeneous and additive functions, Aust. J. Math. Anal. Appl., 6 (2009), 66 pp. |
[189] |
Á. Száz,
Foundations of the theory of vector relators, Adv. Stud. Contemp. Math., 20 (2010), 139-195.
|
[190] |
Á. Száz,
Galois-type connections and continuities of pairs of relations, J. Int. Math. Virt. Inst., 2 (2012), 39-66.
|
[191] |
Á. Száz,
Lower semicontinuity properties of relations in relator spaces, Adv. Stud. Contemp. Math., (Kyungshang), 23 (2013), 107-158.
|
[192] |
Á. Száz, An extension of an additive selection theorem of Z. Gajda and R. Ger to vector relator spaces, Sci. Ser. A Math. Sci. (N.S.), 24 (2013), 33-54. Google Scholar |
[193] |
Á. Száz,
Inclusions for compositions and box products of relations, J. Int. Math. Virt. Inst., 3 (2013), 97-125.
|
[194] |
Á. Száz,
A particular Galois connection between relations and set functions, Acta Univ. Sapientiae, Math., 6 (2014), 73-91.
doi: 10.2478/ausm-2014-0019. |
[195] |
Á. Száz,
Generalizations of Galois and Pataki connections to relator spaces, J. Int. Math. Virt. Inst., 4 (2014), 43-75.
|
[196] |
Á. Száz, Remarks and problems at the conference on inequalities and applications, Hajdúszoboszló, Hungary, Tech. Rep., Inst. Math., Univ. Debrecen, 5 (2014), 12 pp. Google Scholar |
[197] |
Á. Száz, Basic tools, increasing functions, and closure operations in generalized ordered sets, In: P. M. Pardalos and Th. M. Rassias (Eds.), Contributions in Mathematics and Engineering: In Honor of Constantion Caratheodory, Springer, 2016,551–616. |
[198] |
Á. Száz,
A natural Galois connection between generalized norms and metrics, Acta Univ. Sapientiae Math., 9 (2017), 360-373.
doi: 10.1515/ausm-2017-0027. |
[199] |
Á. Száz, Four general continuity properties, for pairs of functions, relations and relators, whose particular cases could be investigated by hundreds of mathematicians, Tech. Rep., Inst. Math., Univ. Debrecen, 1 (2017), 17 pp. Google Scholar |
[200] |
Á. Száz, An answer to the question "What is the essential difference between Algebra and Topology?" of Shukur Al-aeashi, Tech. Rep., Inst. Math., Univ. Debrecen, 2 (2017), 6 pp. Google Scholar |
[201] |
Á. Száz, Contra continuity properties of relations in relator spaces, Tech. Rep., Inst. Math., Univ. Debrecen, 5 (2017), 48 pp. Google Scholar |
[202] |
Á. Száz, The closure-interior Galois connection and its applications to relational equations and inclusions, J. Int. Math. Virt. Inst., 8 (2018), 181-224. Google Scholar |
[203] |
Á. Száz, A unifying framework for studying continuity, increasingness, and Galois connections, MathLab J., 1 (2018), 154-173. Google Scholar |
[204] |
Á. Száz, Corelations are more powerful tools than relations, In: Th. M. Rassias (Ed.), Applications of Nonlinear Analysis, Springer Optimization and Its Applications, 134 (2018), 711-779. |
[205] |
Á. Száz,
Relationships between inclusions for relations and inequalities for corelations, Math. Pannon., 26 (2018), 15-31.
|
[206] |
Á. Száz, Galois and Pataki connections on generalized ordered sets, Earthline J. Math. Sci., 2 (2019), 283-323. Google Scholar |
[207] |
Á. Száz, Birelator spaces are natural generalizations of not only bitopological spaces, but also ideal topological spaces, In: Th. M. Rassias and P. M. Pardalos (Eds.), Mathematical Analysis and Applications, Springer Optimization and Its Applications, Springer Nature Switzerland AG, 154 (2019), 543-586. Google Scholar |
[208] |
Á. Száz and J. Túri,
Comparisons and compositions of Galois–type connections, Miskolc Math. Notes, 7 (2006), 189-203.
doi: 10.18514/MMN.2006.144. |
[209] |
Á. Száz and A. Zakaria, Mild continuity properties of relations and relators in relator spaces, In: P. M. Pardalos and Th. M. Rassias (Eds.), Essays in Mathematics and its Applications: In Honor of Vladimir Arnold, Springer, 2016,439–511. |
[210] |
J. P. Thomas,
Maximal connected topologies, J. Austral. Math. Soc., 8 (1968), 700-705.
doi: 10.1017/S1446788700006510. |
[211] |
T. Thompson, Characterizations of irreducible spaces, Kyungpook Math. J., 21 (1981), 191–194. |
[212] |
W. J. Thron, Topological Structures, Holt, Rinehart and Winston, New York, 1966. |
[213] |
H. Tietze,
Beiträge zur allgemeinen Topologie I. Axiome für verschiedene Fassungen des Umgebungsbegriffs, Math. Ann., 88 (1923), 290-312.
doi: 10.1007/BF01579182. |
[214] |
J. W. Tukey, Convergence and Uniformity in Topology, Princeton Univ. Press, Princeton, 1940.
![]() |
[215] |
A. Weil, Sur les Espaces á Structure Uniforme et sur la Topologie Générale, Actual. Sci. Ind. 551, Herman and Cie, Paris, 1937. Google Scholar |
[216] |
R. L. Wilder,
Evolution of the topological concept of connected, Amer. Math. Monthly, 85 (1978), 720-726.
doi: 10.2307/2321676. |
[217] |
J. Wu, C. Wang and D. Zhang,
Connected door spaces and topological solutions of equations, Aequationes Math., 92 (2018), 1149-1161.
doi: 10.1007/s00010-018-0577-0. |
[218] |
I. Zorlutuna,
On a function of hyperconnected spaces, Demonstr. Math., 40 (2007), 939-950.
|
show all references
References:
[1] |
M. E. Adams, K. Belaid, L. Diri and O. Echi,
Submaximal and spectral spaces, Math. Proc. Royal Irish Acad., 108 (2008), 137-147.
doi: 10.3318/PRIA.2008.108.2.137. |
[2] |
B. Ahmad and T. Noiri,
The inverse images of hyperconnected sets, Mat. Vesn., 37 (1985), 177-181.
|
[3] |
N. Ajmal and J. K. Kohli,
Properties of hyperconnected spaces, their mappings into Hausdorff spaces and embeddings into hyperconnected spaces, Acta Math. Hung., 60 (1992), 41-49.
doi: 10.1007/BF00051755. |
[4] |
P. Alexandroff,
Zur Begründung der $n$-dimensionalen mengentheorischen Topologie, Math. Ann., 94 (1925), 296-308.
doi: 10.1007/BF01208660. |
[5] |
D. R. Anderson,
On connected irresolvable Hausdorff spaces, Proc. Amer. Math. Soc., 16 (1965), 463-466.
doi: 10.2307/2034674. |
[6] |
A. V. Arhangelskij and P. J. Collins,
On submaximal spaces, Topology Appl., 64 (1995), 219-241.
doi: 10.1016/0166-8641(94)00093-I. |
[7] |
D. Baboolal, H. L. Bentley and R. G. Ori,
Connection properties in nearness spaces, Canad. Math. Bull., 28 (1985), 212-217.
doi: 10.4153/CMB-1985-024-5. |
[8] |
D. Baboolal and R. G. Ori,
On uniform connecedness in nearness spaces, Math. Japonica, 42 (1995), 279-282.
|
[9] |
A. P. D. Balan and R. M. S. Sundary, Door spaces on generalized topology, Int. J. Comput. Sci. Math., 6 (2014), 69-75. Google Scholar |
[10] |
K. Belaid, L. Dridi and O. Echi,
Submaximal and door compactifications, Topology Appl, 158 (2011), 1969-1975.
doi: 10.1016/j.topol.2011.06.039. |
[11] |
S. S. Benchalli, B. M. Ittanagi and R. S. Wali, On minimal open sets and maps in topological spaces, J. Comp. Math. Sci., 2 (2011), 208-220. Google Scholar |
[12] |
K. Bhavani and D. Sivaraj,
On $\frak{T}$-hyperconnected spaces, Bull. Allahabad Math. Soc., 29 (2014), 15-25.
|
[13] |
G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, Providence, RI, 1967. Google Scholar |
[14] |
T. S. Blyth and M. F. Janowitz, Residuation Theory, Pergamon Press, Oxford, 1972.
![]() |
[15] |
M. Bognár,
On some variants of connectedness, Acta Math. Hungar., 79 (1998), 117-122.
doi: 10.1023/A:1006561806310. |
[16] |
C. R. Borges,
Hyperconnectivity of hyperspaces, Math. Japon., 30 (1985), 757-761.
|
[17] |
M. K. Bose and R. Tiwari,
$(\omega)$topological connectedness and hyperconnectedness, Note Mat., 31 (2011), 93-101.
|
[18] |
N. Bourbaki, General Topology, Chap 1–4, Springer-Verlag, Berlin, 1989. |
[19] |
N. Bourbaki, Éléments de Mathématique, Algébre Commutative, Chap. 1–4, Springer, Berlin, 2006. Google Scholar |
[20] |
S. Buglyó and Á. Száz,
A more important Galois connection between distance functions and inequality relations, Sci. Ser. A Math. Sci. (N.S.), 18 (2009), 17-38.
|
[21] |
G. Cantor,
Über unedliche, linearen Punktmannigfaltigkeiten, Math. Ann., 21 (1983), 545-591.
doi: 10.1007/BF01446819. |
[22] |
E. Čech, Topological Spaces, Academia, Prague, 1966. Google Scholar |
[23] |
C. Chattopadhyay,
Debse sets, nowhere dense sets and an ideal in generalized closure spaces, Mat. Vesnik, 59 (2007), 181-188.
|
[24] |
A. R. Choudhury, A. Mukharjee and M. K. Bose,
Hyperconnectedness and extremal disconnectedness in $(\alpha)$topological spaces, Hacet. J. Math. Stat., 44 (2015), 289-294.
|
[25] |
P. J. Collins,
On uiform connection properties, Amer. Math. Monthly, 78 (1971), 372-374.
doi: 10.1080/00029890.1971.11992762. |
[26] |
W. W. Comfort and S. Garcia-Ferreira,
Resolvability: A selective survey and some new results, Topology Appl., 74 (1996), 149-167.
doi: 10.1016/S0166-8641(96)00052-1. |
[27] |
Á. Császár, Foundations of General Topology, Pergamon Press, London, 1963.
![]() |
[28] |
Á. Császár, General Topology, Adam Hilger, Bristol, 1978. |
[29] |
Á. Császár,
$\gamma$-connected sets, Acta Math. Hungar., 101 (2003), 273-279.
doi: 10.1023/B:AMHU.0000004939.57085.9e. |
[30] |
Á. Császár,
Extremally disconnected generalized topologies, Ann. Univ. Sci Budapest, 47 (2004), 91-96.
|
[31] |
Á. Császár and R. Z. Domiaty,
Fine quasi-uniformities, Ann. Univ. Budapest, 22/23 (1979/1980), 151-158.
|
[32] |
Curtis, D. W. and Mathews, J. C., Generalized uniformities for pairs of spaces, Topology Conference, Arizona State University, Tempe, Arizona, 1967,212–246. |
[33] |
B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511809088.![]() ![]() |
[34] |
A. S. Davis,
Indexed systems of neighbordoods for general topological spaces, Amer. Math. Monthly, 68 (1961), 886-894.
doi: 10.1080/00029890.1961.11989785. |
[35] |
J. Deák,
A counterexample on completeness in relator spaces, Publ. Math. Debrecen, 41 (1992), 307-309.
|
[36] |
K. Denecke, M. Erné and S. L. Wismath (Eds.), Galois Connections and Applications, Kluwer Academic Publisher, Dordrecht, 2004. Google Scholar |
[37] |
D. Doičinov, A unified theory of topological spaces, proximity spaces and uniform spaces, Dokl. Acad. Nauk SSSR, 156 (1964), 21–24. (Russian) |
[38] |
J. Dontchev,
On superconnected spaces, Serdica, 20 (1994), 345-350.
|
[39] |
J. Dontchev,
On door spaces, Indian J. Pure Appl. Math., 26 (1995), 873-881.
|
[40] |
J. Dontchev,
On submaximal spaces, Tamkang J. Math., 26 (1995), 243-250.
|
[41] |
J. Dontchev, M. Ganster, G. J. Kennedy and S. D. McCartan,
On minimal door, minimal anti-compact and minimal $T_{3/4}$–spaces, Math. Proc. Royal Irish Acad., 98 (1998), 209-215.
|
[42] |
J. Dontchev, M. Ganster and D. Rose,
Ideal resolvability, Topology Appl., 93 (1999), 1-16.
doi: 10.1016/S0166-8641(97)00257-5. |
[43] |
E. K. van Douwen,
Applications of maximal topologies, Top. Appl., 51 (1993), 125-139.
doi: 10.1016/0166-8641(93)90145-4. |
[44] |
L. Dridi, S. Lazaar and T. Turki,
$F$-door spaces and $F$-submaximal spaces, Appl. Gen. Topol., 14 (2013), 97-113.
doi: 10.4995/agt.2013.1621. |
[45] |
Z. Duszyński,
On some concepts of weak connectedness of topological spaces, Acta Math. Hungar., 110 (2006), 81-90.
doi: 10.1007/s10474-006-0008-x. |
[46] |
V. A. Efremovič, The geometry of proximity, Mat. Sb., 31 (1952), 189–200. (Russian) |
[47] |
V. A. Efremović and A. S. Švarc, A new definition of uniform spaces. Metrization of proximity spaces, Dokl. Acad. Nauk. SSSR, 89 (1953), 393–396. (Russian) |
[48] |
E. Ekici,
Generalized hyperconnectedness, Acta Math. Hungar., 133 (2011), 140-147.
doi: 10.1007/s10474-011-0086-2. |
[49] |
E. Ekici,
Generalized submaximal spaces, Acta Math. Hungar., 134 (2012), 132-138.
doi: 10.1007/s10474-011-0109-z. |
[50] |
E. Ekici and T. Noiri,
Connectedness in ideal topological spaces, Novi Sad J. Math., 38 (2008), 65-70.
|
[51] |
E. Ekici and T. Noiri,
*-hyperconnected ideal topological spaces, An. Stiint. Univ. Al. I. Cuza Iasi, 58 (2012), 121-129.
|
[52] |
R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977. |
[53] |
U. V. Fattech and D. Singh,
Some results on locally hyperconnected spaces, Ann. Soc. Sci. Bruxelles, Sér. I, 97 (1983), 3-9.
|
[54] |
U. V. Fattech and D. Singh, A note on $D$-spaces, Bull. Calcutta Math. Soc., 75 (1983), 363–368. |
[55] |
P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982. |
[56] |
G. B. Folland,
A tale of topology, Amer. Math. Monthly, 117 (2010), 663-672.
doi: 10.4169/000298910x515730. |
[57] |
S. A. Gaal, Point Set Topology, Academic Press, New York, 1964.
![]() |
[58] |
M. Ganster,
Preopen sets and resolvable spaces, Kyungpook Math. J., 27 (1987), 135-143.
|
[59] |
B. Ganter and R. Wille, Formal Concept Analysis, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-642-59830-2. |
[60] |
M. Ganster, I. L. Reilly and M. K. Vamanamurthy,
Dense sets and irresolvable spaces, Ricerche Mat., 36 (1987), 163-170.
|
[61] |
B. Garai and C. Bandyopadhyay,
Nowhere dense sets and hyperconnected $s$-topological spaces, Bull. Cal. Math. Soc., 92 (2000), 55-58.
|
[62] |
B. Garai and C. Bandyopadhyay,
On parirwise hyperconnected spaces, Soochow J. Math., 27 (2001), 391-399.
|
[63] |
B. Garai and C. Bandyopadhyay,
On irresolvable spaces, Bull. Cal. Math. Soc., 95 (2003), 107-112.
|
[64] |
G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980. |
[65] |
T. Glavosits,
Generated preorders and equivalences, Acta Acad. Paed. Agrienses, Sect. Math., 29 (2002), 95-103.
|
[66] |
T. Glavosits,
Preorders and equivalences generated by commuting relations, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 18 (2002), 53-56.
|
[67] |
R. G. D. Gnanam, Generalized hyper connected space in bigeneralized topological space, Int. J. Math. Trends Technology, 47 (2017), 27-103. Google Scholar |
[68] |
S. W. Golomb,
A connected topology for the integers, Amer. Math. Monthly, 66 (1959), 663-665.
doi: 10.1080/00029890.1959.11989385. |
[69] |
V. Gregori and J. Ferrer,
Quasi-metrization and completion for Pervin's quasi-uniformity, Stohastica, 6 (1982), 151-156.
|
[70] |
J. A. Guthrie, D. F. Reynolds and and H. E. Stone,
Connected expansions of topologies, Bull. Austral. Math. Soc., 9 (1973), 259-265.
doi: 10.1017/S000497270004315X. |
[71] |
F. Hausdorff, Grundzüge der Mengenlehre, (German) Chelsea Publishing Company, New York, N. Y., 1949. |
[72] |
H. Herrlich,
Topological Structeres, Math. Centre Tracts, 52 (1974), 59-122.
|
[73] |
E. Hewitt,
A problem of set-theoretic topology, Duke Math. J, 10 (1943), 309-333.
doi: 10.1215/S0012-7094-43-01029-4. |
[74] |
W. Hunsaker and W. Lindgren,
Construction of quasi-uniformities, Math. Ann., 188 (1970), 39-42.
doi: 10.1007/BF01435413. |
[75] |
A. Illanes,
Finite and $\omega$-resolvability, Proc. Amer. Math. Soc., 124 (1996), 1243-1246.
doi: 10.1090/S0002-9939-96-03348-5. |
[76] |
J. R. Isbell, Uniform Spaces, Amer. Math. Soc., Providence, 1964. Google Scholar |
[77] |
S. Jafari and T. Noiri,
Properties of $\beta$-connected spaces, Acta Math. Hungar., 101 (2003), 227-236.
doi: 10.1023/B:AMHU.0000003907.90823.79. |
[78] |
I. M. James, Topological and Uniform Structures, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4716-6. |
[79] |
A. Kalapodi,
Examples on irresolvability, Scientiae Math. Japon., 76 (2013), 461-469.
|
[80] |
J. L. Kelley, General Topology, Van Nostrand Reinhold Company, New York, 1955. |
[81] |
H. Kenyon,
Two theorems on relations, Trans. Amer. Math. Soc., 107 (1963), 1-9.
doi: 10.1090/S0002-9947-1963-0148590-2. |
[82] |
E. Khalimsky, R. Kopperman and P. R. Meyer,
Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36 (1990), 1-17.
doi: 10.1016/0166-8641(90)90031-V. |
[83] |
H. J. Kowalsky, Topologische Räumen, Birkhäuser, Basel, 1960. Google Scholar |
[84] |
M. K. R. S. V. Kumar,
Hyperconnected type spaces, Acta Cienc. Indica Math., 31 (2005), 273-275.
|
[85] |
K. Kuratowski, Topologie I, Revised and augmented eddition: Topology I, Academic Press, New York, 1966.
![]() |
[86] |
J. Kurdics, A note on connection properties, Acta Math. Acad. Paedagog. Nyházi., 12, (1990), 57–59. Google Scholar |
[87] |
J. Kurdics, Connected and Well-Chained Relator Spaces, Doctoral Dissertation, Lajos Kossuth University, Debrecen, 1991, 30 pp. (Hungarian) Google Scholar |
[88] |
J. Kurdics, J. Mala and Á. Száz,
Connectedness and well-chainedness properties of symmetric covering relators, Pure Math. Appl., 2 (1991), 189-197.
|
[89] |
J. Kurdics and Á. Száz,
Connected relator spaces, Publ. Math. Debrecen, 40 (1992), 155-164.
|
[90] |
J. Kurdics and Á. Száz, Well-chained relator spaces, Kyungpook Math. J., 32 (1992), 263–271. |
[91] |
J. Kurdics and Á. Száz,
Well-chainedness characterizations of connected relators, Math. Pannon., 4 (1993), 37-45.
|
[92] |
R. E. Larson, Minimum and maximum topological spaces, Bull. Acad. Polon., 18 (1970), 707–710. |
[93] |
S. W. Lee, M. A. Moon and M. H. Cho,
On submaximal and quasi-submaximal spaces, Honam Math. J., 32 (2010), 643-649.
doi: 10.5831/HMJ.2010.32.4.643. |
[94] |
J. E. Leuschen and B. T. Sims,
Stronger forms of connectivity, Rend. Circ. Mat. Palermo, 21 (1972), 255-266.
doi: 10.1007/BF02843790. |
[95] |
N. Levine,
Strongly connected sets in topology, Amer. Math. Monthly, 72 (1965), 1098-1101.
doi: 10.2307/2315958. |
[96] |
N. Levine, The superset topology, Amer. Math. Monthly, 75 (1968), 745-746. Google Scholar |
[97] |
N. Levine,
Dense topologies, Amer. Math. Monthly, 75 (1968), 847-852.
doi: 10.1080/00029890.1968.11971077. |
[98] |
N. Levine,
On uniformities generated by equivalence relations, Rend. Circ. Mat. Palermo, 18 (1969), 62-70.
doi: 10.1007/BF02888946. |
[99] |
N. Levine,
On Pervin's quasi uniformity, Math. J. Okayama Univ., 14 (1970), 97-102.
|
[100] |
N. Levine,
Well-chained uniformities, Kyungpook Math. J., 11 (1971), 143-149.
|
[101] |
N. Levine,
The finite square semi-uniformity, Kyungpook Math. J., 13 (1973), 179-184.
|
[102] |
S. N. Maheswari and U. Tapi,
Connectedness of a stronger type in topological spaces, Nanta Math., 12 (1979), 102-109.
|
[103] |
R. A. Mahmoud and D. A. Rose,
A note on spaces via dense sets, Tamkang J. Math., 24 (1993), 333-339.
|
[104] |
R. A. Mahmoud and D. A. Rose,
A note on submaximal spaces and SMPC functions, Demonstratio Math., 28 (1995), 567-573.
|
[105] |
J. Mala,
An equation for families of relations, Pure Math. Apll., Ser. B, 1 (1990), 185-188.
|
[106] |
J. Mala, Relator Spaces, Doctoral Dissertation, Lajos Kossuth University, Debrecen, 1990, 48 pp. (Hungarian) Google Scholar |
[107] |
J. Mala,
Relators generating the same generalized topology, Acta Math. Hungar., 60 (1992), 291-297.
doi: 10.1007/BF00051647. |
[108] |
J. Mala,
Finitely generated quasi-proximities, Period. Math. Hungar., 35 (1997), 193-197.
doi: 10.1023/A:1004553417107. |
[109] |
J. Mala,
On proximal properties of proper symmetrizations of relators, Publ. Math. Debrecen, 58 (2001), 1-7.
|
[110] |
J. Mala and Á. Száz,
Equations for families of relations can also be solved, C. R. Math. Rep. Acad. Sci. Canada, 12 (1990), 109-112.
|
[111] |
J. Mala and Á. Száz,
Properly topologically conjugated relators, Pure Math. Appl., Ser. B, 3 (1992), 119-136.
|
[112] |
J. Mala and Á. Száz,
Modifications of relators, Acta Math. Hungar., 77 (1997), 69-81.
doi: 10.1023/A:1006583622770. |
[113] |
Z. P. Mamuzić, Introduction to General Topology, Noordhoff, Groningen, 1963. |
[114] |
J. C. Mathews,
A note on well-chained spaces, Amer. Math. Monthly, 75 (1968), 273-275.
doi: 10.2307/2314959. |
[115] |
P. M. Mathew, On hyperconnected spaces, Indian J. Pure Appl. Math., 19 (1988), 1180–1184. |
[116] |
P. M. Mathew,
On ultraconnected spaces, Int. J. Math. Sci., 13 (1990), 349-352.
doi: 10.1155/S0161171290000515. |
[117] |
J. C. Mathews,
A note on well-chained spaces, Amer. Math. Monthly, 75 (1968), 273-275.
doi: 10.2307/2314959. |
[118] |
S. D. McCartan,
Door spaces are identifiable, Proc. Roy. Irish Acad., 87A (1987), 13-16.
|
[119] |
S. Modak,
Relativization in resolvability and irresolvability, Int. Math. Forum, 6 (2011), 1059-1064.
|
[120] |
S. G. Mrówka and W. J. Pervin,
On uniform connectedness, Proc. Amer. Mth. Soc., 15 (1964), 446-449.
doi: 10.1090/S0002-9939-1964-0161307-7. |
[121] |
Á. Münnich and Á. Száz,
An alternative theorem for continuous relations and its applications, Publ. Inst. Math. (Beograd), 33 (1983), 163-168.
|
[122] |
M. G. Murdeshwar and S. A. Naimpally, Quasi-Uniform Topological Spaces, Noordhoff, Groningen, 1966. |
[123] |
L. Nachbin, Topology and Order, D. Van Nostrand, Princeton, 1965. |
[124] |
S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press, Cambridge, 1970.
![]() |
[125] |
H. Nakano and K. Nakano,
Connector theory, Pacific J. Math., 56 (1975), 195-213.
doi: 10.2140/pjm.1975.56.195. |
[126] |
G. Navalagi, M. L. Thivagar, R. R. Rajeswari and S. A. Ponmani,
On $(1, 2)\alpha$-hyperconnected spaces, Int. J. Math. Anal., 3 (2006), 121-129.
|
[127] |
T. Nieminen,
On ultrapseudocompact and related spaces, Ann. Acad. Sci. Fennicae, 3 (1977), 185-205.
doi: 10.5186/aasfm.1977.0321. |
[128] |
T. Noiri,
A note on hyperconnected sets, Mat. Vesnik, 3 (1979), 53-60.
|
[129] |
T. Noiri,
Functions which preserve hyperconnected spaces, Rev. Roum. Math. Pures Appl., 25 (1980), 1091-1094.
|
[130] |
T. Noiri,
Hyperconnectedness and preopen sets, Rev. Roum. Math. Pures Appl., 29 (1984), 329-334.
|
[131] |
T. Noiri,
Properties of hyperconnected spaces, Acta Math. Hungar., 66 (1995), 147-154.
doi: 10.1007/BF01874359. |
[132] |
K. Padmavally,
An example of a connected irresolvable Hausdorff space, Duke Math. J., 20 (1953), 513-520.
doi: 10.1215/S0012-7094-53-02050-X. |
[133] |
W. Page, Topological Uniform Structures, John Wiley and Sons Inc, New York, 1978. |
[134] |
G. Pataki, Supplementary notes to the theory of simple relators, Radovi Mat., 9 (1999), 101–118. |
[135] |
G. Pataki,
On the extensions, refinements and modifications of relators, Math. Balk., 15 (2001), 155-186.
|
[136] |
G. Pataki, Well-chained, Connected and Simple Relators, Ph.D Dissertation, Debrecen, 2004. Google Scholar |
[137] |
G. Pataki and Á. Száz,
A unified treatment of well-chainedness and connectedness properties, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 19 (2003), 101-165.
|
[138] |
W. J. Pervin,
Uniformizations of neighborhood axioms, Math. Ann., 147 (1962), 313-315.
doi: 10.1007/BF01440952. |
[139] |
W. J. Pervin,
Quasi-uniformization of topological spaces, Math. Ann., 147 (1962), 316-317.
doi: 10.1007/BF01440953. |
[140] |
W. J. Pervin,
Quasi-proximities for topological spaces, Math. Ann., 150 (1963), 325-326.
doi: 10.1007/BF01470761. |
[141] |
W. J. Pervin,
Connectedness in bitopological spaces, Indag. Math., 29 (1967), 369-372.
|
[142] |
V. Pipitone and G. Russo,
Spazi semiconnessi e spazi semiaperty, Rend. Circ. Mat. Palermo, 24 (1975), 273-285.
doi: 10.1007/BF02843735. |
[143] |
Cs. Rakaczki and Á. Száz,
Semicontinuity and closedness properties of relations in relator spaces, Mathematica (Cluj), 45 (2003), 73-92.
|
[144] |
D. Rendi and B. Rendi, On relative $n$-connectedness, The 7th Symposium of Mathematics and Applications, "Politehnica" University of Timisoara, Romania, 1997,304–308. Google Scholar |
[145] |
V. Renukadevi,
On generalizations of hyperconnected spaces, J. Adv. Res. Pure Math., 4 (2012), 46-58.
|
[146] |
V. Renukadevi,
Remarks on generalized hypperconnectedness, Acta Math. Hung., 136 (2012), 157-164.
doi: 10.1007/s10474-011-0192-1. |
[147] |
F. Riesz, Die Genesis der Raumbegriffs, Math. Naturwiss. Ber. Ungarn, 24 (1907), 309-353. Google Scholar |
[148] |
F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti Ⅳ Congr. Intern.Mat., Roma, Ⅱ (1908), 18-24. Google Scholar |
[149] |
D. Rose, K. Sizemore and B. Thurston, Strongly irresolvable spaces, International Journal of Mathematics and Mathematical Sciences, 2006 (2006), Art. ID 53653, 12 pp.
doi: 10.1155/IJMMS/2006/53653. |
[150] |
H. M. Salih, On door spaces, Journal of College of Education, Al-Mustansnyah University, Bagdad, Iraq, 3 (2006), 112–117. Google Scholar |
[151] |
J. Schröder,
On sub-, pseeudo- and quasimaximalspaces, Comm. Math. Univ. Carolinae, 39 (1998), 197-206.
|
[152] |
J. Schröder,
Some answers concerning submaximal spaces, Questions and Answers in General Topology, 17 (1999), 221-225.
|
[153] |
A. K. Sharma,
On some properties of hyperconnected spaces, Mat. Vesnik, 14 (1977), 25-27.
|
[154] |
R.-X. Shen,
A note on generalized connectedness, Acta Math. Hungar., 122 (2009), 231-235.
doi: 10.1007/s10474-008-8009-6. |
[155] |
J. L. Sieber and W. J. Pervin,
Connectedness in syntopogeneous spaces, Proc. Amer. Math. Soc., 15 (1964), 590-595.
doi: 10.1090/S0002-9939-1964-0166747-8. |
[156] |
W. Sierpinski, General Topology, Mathematical Expositions, 7, University of Toronto Press, Toronto, 1952. |
[157] |
Yu. M. Smirnov, On proximity spaces, Math. Sb., 31 (1952), 543–574. (Russian.) |
[158] |
L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1970. |
[159] |
A. K. Steiner,
The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc., 122 (1966), 379-398.
doi: 10.1090/S0002-9947-1966-0190893-2. |
[160] |
Gy. Szabó and Á. Száz,
Defining nets for integration, Publ. Math. Debrecen, 36 (1989), 237-252.
|
[161] |
Á. Száz, Coherences instead of convergences, Proc. Conf. Convergence and Generalized Functions (Katowice, Poland, 1983), Polish Acad Sci., Warsaw, 1984,141–148. Google Scholar |
[162] |
Á. Száz,
Basic tools and mild continuities in relator spaces, Acta Math. Hungar., 50 (1987), 177-201.
doi: 10.1007/BF01903935. |
[163] |
Á. Száz, Directed, topological and transitive relators, Publ. Math. Debrecen, 35 (1988), 179–196. |
[164] |
Á. Száz,
Projective and inductive generations of relator spaces, Acta Math. Hungar., 53 (1989), 407-430.
doi: 10.1007/BF01953378. |
[165] |
Á. Száz,
Lebesgue relators, Monatsh. Math., 110 (1990), 315-319.
doi: 10.1007/BF01301684. |
[166] |
Á. Száz, The fat and dense sets are more important than the open and closed ones, Abstracts of the Seventh Prague Topological Symposium, Inst. Math. Czechoslovak Acad. Sci., 1991, p106. Google Scholar |
[167] |
Á. Száz, Relators, Nets and Integrals, Unfinished doctoral thesis, Debrecen, 1991. Google Scholar |
[168] |
Á. Száz,
Inverse and symmetric relators, Acta Math. Hungar., 60 (1992), 157-176.
doi: 10.1007/BF00051766. |
[169] |
Á. Száz, Structures derivable from relators, Singularité, 3 (1992), 14-30. Google Scholar |
[170] |
Á. Száz, Refinements of relators, Tech. Rep., Inst. Math., Univ. Debrecen, 76 (1993), 19 pp. Google Scholar |
[171] |
Á. Száz,
Cauchy nets and completeness in relator spaces, Colloq. Math. Soc. János Bolyai, 55 (1993), 479-489.
|
[172] |
Á. Száz,
Neighbourhood relators, Bolyai Soc. Math. Stud., 4 (1995), 449-465.
|
[173] |
Á. Száz,
Relations refining and dividing each other, Pure Math. Appl. Ser. B, 6 (1995), 385-394.
|
[174] |
Á. Száz, Connectednesses of refined relators, Tech. Rep., Inst. Math., Univ. Debrecen, 1996, 6 pp. Google Scholar |
[175] |
Á. Száz,
Topological characterizations of relational properties, Grazer Math. Ber., 327 (1996), 37-52.
|
[176] |
Á. Száz,
Uniformly, proximally and topologically compact relators, Math. Pannon., 8 (1997), 103-116.
|
[177] |
Á. Száz,
An extension of Kelley's closed relation theorem to relator spaces, Filomat, 14 (2000), 49-71.
|
[178] |
Á. Száz,
Somewhat continuity in a unified framework for continuities of relations, Tatra Mt. Math. Publ., 24 (2002), 41-56.
|
[179] |
Á. Száz,
A Galois connection between distance functions and inequality relations, Math. Bohem., 127 (2002), 437-448.
|
[180] |
Á. Száz,
Upper and lower bounds in relator spaces, Serdica Math. J., 29 (2003), 239-270.
|
[181] |
Á. Száz,
An extension of Baire's category theorem to relator spaces, Math. Morav., 7 (2003), 73-89.
doi: 10.5937/matmor0307073s. |
[182] |
Á. Száz,
Rare and meager sets in relator spaces, Tatra Mt. Math. Publ., 28 (2004), 75-95.
|
[183] |
Á. Száz, Galois-type connections on power sets and their applications to relators, Tech. Rep., Inst. Math., Univ. Debrecen, 2 (2005), 38 pp. Google Scholar |
[184] |
Á. Száz,
Supremum properties of Galois–type connections, Comment. Math. Univ. Carolin., 47 (2006), 569-583.
|
[185] |
Á. Száz,
Minimal structures, generalized topologies, and ascending systems should not be studied without generalized uniformities, Filomat, 21 (2007), 87-97.
doi: 10.2298/FIL0701087S. |
[186] |
Á. Száz, Applications of fat and dense sets in the theory of additive functions, Tech. Rep., Inst. Math., Univ. Debrecen, 2007/3, 29 pp. Google Scholar |
[187] |
Á. Száz,
Galois type connections and closure operations on preordered sets, Acta Math. Univ. Comen., 78 (2009), 1-21.
|
[188] |
Á. Száz, Applications of relations and relators in the extensions of stability theorems for homogeneous and additive functions, Aust. J. Math. Anal. Appl., 6 (2009), 66 pp. |
[189] |
Á. Száz,
Foundations of the theory of vector relators, Adv. Stud. Contemp. Math., 20 (2010), 139-195.
|
[190] |
Á. Száz,
Galois-type connections and continuities of pairs of relations, J. Int. Math. Virt. Inst., 2 (2012), 39-66.
|
[191] |
Á. Száz,
Lower semicontinuity properties of relations in relator spaces, Adv. Stud. Contemp. Math., (Kyungshang), 23 (2013), 107-158.
|
[192] |
Á. Száz, An extension of an additive selection theorem of Z. Gajda and R. Ger to vector relator spaces, Sci. Ser. A Math. Sci. (N.S.), 24 (2013), 33-54. Google Scholar |
[193] |
Á. Száz,
Inclusions for compositions and box products of relations, J. Int. Math. Virt. Inst., 3 (2013), 97-125.
|
[194] |
Á. Száz,
A particular Galois connection between relations and set functions, Acta Univ. Sapientiae, Math., 6 (2014), 73-91.
doi: 10.2478/ausm-2014-0019. |
[195] |
Á. Száz,
Generalizations of Galois and Pataki connections to relator spaces, J. Int. Math. Virt. Inst., 4 (2014), 43-75.
|
[196] |
Á. Száz, Remarks and problems at the conference on inequalities and applications, Hajdúszoboszló, Hungary, Tech. Rep., Inst. Math., Univ. Debrecen, 5 (2014), 12 pp. Google Scholar |
[197] |
Á. Száz, Basic tools, increasing functions, and closure operations in generalized ordered sets, In: P. M. Pardalos and Th. M. Rassias (Eds.), Contributions in Mathematics and Engineering: In Honor of Constantion Caratheodory, Springer, 2016,551–616. |
[198] |
Á. Száz,
A natural Galois connection between generalized norms and metrics, Acta Univ. Sapientiae Math., 9 (2017), 360-373.
doi: 10.1515/ausm-2017-0027. |
[199] |
Á. Száz, Four general continuity properties, for pairs of functions, relations and relators, whose particular cases could be investigated by hundreds of mathematicians, Tech. Rep., Inst. Math., Univ. Debrecen, 1 (2017), 17 pp. Google Scholar |
[200] |
Á. Száz, An answer to the question "What is the essential difference between Algebra and Topology?" of Shukur Al-aeashi, Tech. Rep., Inst. Math., Univ. Debrecen, 2 (2017), 6 pp. Google Scholar |
[201] |
Á. Száz, Contra continuity properties of relations in relator spaces, Tech. Rep., Inst. Math., Univ. Debrecen, 5 (2017), 48 pp. Google Scholar |
[202] |
Á. Száz, The closure-interior Galois connection and its applications to relational equations and inclusions, J. Int. Math. Virt. Inst., 8 (2018), 181-224. Google Scholar |
[203] |
Á. Száz, A unifying framework for studying continuity, increasingness, and Galois connections, MathLab J., 1 (2018), 154-173. Google Scholar |
[204] |
Á. Száz, Corelations are more powerful tools than relations, In: Th. M. Rassias (Ed.), Applications of Nonlinear Analysis, Springer Optimization and Its Applications, 134 (2018), 711-779. |
[205] |
Á. Száz,
Relationships between inclusions for relations and inequalities for corelations, Math. Pannon., 26 (2018), 15-31.
|
[206] |
Á. Száz, Galois and Pataki connections on generalized ordered sets, Earthline J. Math. Sci., 2 (2019), 283-323. Google Scholar |
[207] |
Á. Száz, Birelator spaces are natural generalizations of not only bitopological spaces, but also ideal topological spaces, In: Th. M. Rassias and P. M. Pardalos (Eds.), Mathematical Analysis and Applications, Springer Optimization and Its Applications, Springer Nature Switzerland AG, 154 (2019), 543-586. Google Scholar |
[208] |
Á. Száz and J. Túri,
Comparisons and compositions of Galois–type connections, Miskolc Math. Notes, 7 (2006), 189-203.
doi: 10.18514/MMN.2006.144. |
[209] |
Á. Száz and A. Zakaria, Mild continuity properties of relations and relators in relator spaces, In: P. M. Pardalos and Th. M. Rassias (Eds.), Essays in Mathematics and its Applications: In Honor of Vladimir Arnold, Springer, 2016,439–511. |
[210] |
J. P. Thomas,
Maximal connected topologies, J. Austral. Math. Soc., 8 (1968), 700-705.
doi: 10.1017/S1446788700006510. |
[211] |
T. Thompson, Characterizations of irreducible spaces, Kyungpook Math. J., 21 (1981), 191–194. |
[212] |
W. J. Thron, Topological Structures, Holt, Rinehart and Winston, New York, 1966. |
[213] |
H. Tietze,
Beiträge zur allgemeinen Topologie I. Axiome für verschiedene Fassungen des Umgebungsbegriffs, Math. Ann., 88 (1923), 290-312.
doi: 10.1007/BF01579182. |
[214] |
J. W. Tukey, Convergence and Uniformity in Topology, Princeton Univ. Press, Princeton, 1940.
![]() |
[215] |
A. Weil, Sur les Espaces á Structure Uniforme et sur la Topologie Générale, Actual. Sci. Ind. 551, Herman and Cie, Paris, 1937. Google Scholar |
[216] |
R. L. Wilder,
Evolution of the topological concept of connected, Amer. Math. Monthly, 85 (1978), 720-726.
doi: 10.2307/2321676. |
[217] |
J. Wu, C. Wang and D. Zhang,
Connected door spaces and topological solutions of equations, Aequationes Math., 92 (2018), 1149-1161.
doi: 10.1007/s00010-018-0577-0. |
[218] |
I. Zorlutuna,
On a function of hyperconnected spaces, Demonstr. Math., 40 (2007), 939-950.
|
[1] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[2] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[3] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[4] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[5] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[6] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[7] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[8] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[9] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[10] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[11] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[12] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[13] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[14] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[15] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[16] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[17] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[18] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[19] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[20] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]