March  2020, 28(1): 549-557. doi: 10.3934/era.2020028

Existence of best proximity points satisfying two constraint inequalities

1. 

Department of Mathematics, Bharathidasan University, Trichirapalli, Tamilnadu, India

2. 

University of Banja Luka, Faculty of Electrical Engineering, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina

3. 

Department of Mathematics, Ege University, Bornova, 35100, Izmir, Turkey

* Corresponding author: ozgur.ege@ege.edu.tr

Received  December 2019 Published  March 2020

In this paper, we prove the existence of best proximity point and coupled best proximity point on metric spaces with partial order for weak proximal contraction mappings such that these critical points satisfy some constraint inequalities.

Citation: Duraisamy Balraj, Muthaiah Marudai, Zoran D. Mitrovic, Ozgur Ege, Veeraraghavan Piramanantham. Existence of best proximity points satisfying two constraint inequalities. Electronic Research Archive, 2020, 28 (1) : 549-557. doi: 10.3934/era.2020028
References:
[1]

M. A. Alghamdi, N. Shahzad and F. Vetro, Best proximity points for some classes of proximal contractions, Abstr. Appl. Anal., 2013 (2013), 713252, 10PP. doi: 10.1155/2013/713252.  Google Scholar

[2]

D. Balraj and V. Piramanantham, Best proximity points for generalized proximal cyclic coupled mappings, Int. J. Res. Anal. Rev., 6 (2019), 869-880.   Google Scholar

[3]

S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727-730.   Google Scholar

[4]

B. S. Choudhury and P. Maity, Cyclic coupled fixed point result using Kannan type contractions, J. Operators, 2014 (2014), 876749, 1–5. doi: 10.1155/2014/876749.  Google Scholar

[5]

L. B. Ciric, Generalized contractions and fixed point theorem, Publ. Inst. Math., 12 (1971), 19-26.   Google Scholar

[6]

A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001-1006.  doi: 10.1016/j.jmaa.2005.10.081.  Google Scholar

[7]

M. Jleli and B. Samet, A fixed point problem under two constraint inequalities, Fixed Point Theory Appl., 2016 (2016), 1-14.  doi: 10.1186/s13663-016-0504-9.  Google Scholar

[8]

J. G. Kadwin and M. Marudai, Fixed point and best proximity point results for generalised cyclic coupled mappings, Thai J. Math., 14 (2016), 431-441.   Google Scholar

[9]

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.   Google Scholar

[10]

P. KumamV. PragadeeswararM. Marudai and K. Sitthithakerngkiet, Coupled best proximity points in ordered metric spaces, Fixed Point Theory Appl., 2014 (2014), 1-13.  doi: 10.1186/1687-1812-2014-107.  Google Scholar

[11]

V. Lakshmikantham and L. B. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341-4349.  doi: 10.1016/j.na.2008.09.020.  Google Scholar

show all references

References:
[1]

M. A. Alghamdi, N. Shahzad and F. Vetro, Best proximity points for some classes of proximal contractions, Abstr. Appl. Anal., 2013 (2013), 713252, 10PP. doi: 10.1155/2013/713252.  Google Scholar

[2]

D. Balraj and V. Piramanantham, Best proximity points for generalized proximal cyclic coupled mappings, Int. J. Res. Anal. Rev., 6 (2019), 869-880.   Google Scholar

[3]

S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727-730.   Google Scholar

[4]

B. S. Choudhury and P. Maity, Cyclic coupled fixed point result using Kannan type contractions, J. Operators, 2014 (2014), 876749, 1–5. doi: 10.1155/2014/876749.  Google Scholar

[5]

L. B. Ciric, Generalized contractions and fixed point theorem, Publ. Inst. Math., 12 (1971), 19-26.   Google Scholar

[6]

A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001-1006.  doi: 10.1016/j.jmaa.2005.10.081.  Google Scholar

[7]

M. Jleli and B. Samet, A fixed point problem under two constraint inequalities, Fixed Point Theory Appl., 2016 (2016), 1-14.  doi: 10.1186/s13663-016-0504-9.  Google Scholar

[8]

J. G. Kadwin and M. Marudai, Fixed point and best proximity point results for generalised cyclic coupled mappings, Thai J. Math., 14 (2016), 431-441.   Google Scholar

[9]

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.   Google Scholar

[10]

P. KumamV. PragadeeswararM. Marudai and K. Sitthithakerngkiet, Coupled best proximity points in ordered metric spaces, Fixed Point Theory Appl., 2014 (2014), 1-13.  doi: 10.1186/1687-1812-2014-107.  Google Scholar

[11]

V. Lakshmikantham and L. B. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341-4349.  doi: 10.1016/j.na.2008.09.020.  Google Scholar

[1]

Byung-Soo Lee. Existence and convergence results for best proximity points in cone metric spaces. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 133-140. doi: 10.3934/naco.2014.4.133

[2]

Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks & Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267

[3]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[4]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

[5]

Michel Pierre, Grégory Vial. Best design for a fastest cells selecting process. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 223-237. doi: 10.3934/dcdss.2011.4.223

[6]

Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655

[7]

Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215

[8]

Matt Barker. From mean field games to the best reply strategy in a stochastic framework. Journal of Dynamics & Games, 2019, 6 (4) : 291-314. doi: 10.3934/jdg.2019020

[9]

Peter Bednarik, Josef Hofbauer. Discretized best-response dynamics for the Rock-Paper-Scissors game. Journal of Dynamics & Games, 2017, 4 (1) : 75-86. doi: 10.3934/jdg.2017005

[10]

Hans J. Wolters. A Newton-type method for computing best segment approximations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 133-148. doi: 10.3934/cpaa.2004.3.133

[11]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[12]

Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure & Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791

[13]

Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027

[14]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[15]

Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381

[16]

Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure & Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475

[17]

Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems & Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011

[18]

Tim Hoheisel, Maxime Laborde, Adam Oberman. A regularization interpretation of the proximal point method for weakly convex functions. Journal of Dynamics & Games, 2020, 7 (1) : 79-96. doi: 10.3934/jdg.2020005

[19]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial & Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[20]

Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial & Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (64)
  • HTML views (133)
  • Cited by (0)

[Back to Top]