-
Previous Article
Proof of some conjectures involving quadratic residues
- ERA Home
- This Issue
- Next Article
Riemann-Liouville derivative over the space of integrable distributions
1. | Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2,611 37 Brno, Czech Republic |
2. | Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur S/N, Puebla, Puebla, 72570, México |
In this paper, we generalize the Riemann-Liouville differential and integral operators on the space of Henstock-Kurzweil integrable distributions, $ D_{HK} $. We obtain new fundamental properties of the fractional derivatives and integrals, a general version of the fundamental theorem of fractional calculus, semigroup property for the Riemann-Liouville integral operators and relations between the Riemann-Liouville integral and differential operators. Also, we achieve a generalized characterization of the solution for the Abel integral equation. Finally, we show relations for the Fourier transform of fractional derivative and integral. These results are based on the properties of the distributional Henstock-Kurzweil integral and convolution.
References:
[1] |
A. Alexiewicz,
Linear functionals on Denjoy-integrable functions, Colloquium Math., 1 (1948), 289-293.
doi: 10.4064/cm-1-4-289-293. |
[2] |
A. Atangana,
Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A., 505 (2018), 688-706.
doi: 10.1016/j.physa.2018.03.056. |
[3] |
A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 22 pp.
doi: 10.1140/epjp/i2018-12021-3. |
[4] |
A. Atangana and J. F. Gómez-Aguilar,
Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Solitons Fractals, 114 (2018), 516-535.
doi: 10.1016/j.chaos.2018.07.033. |
[5] |
A. Atangana and J. F. Gómez-Aguilar,
Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.
doi: 10.1002/num.22195. |
[6] |
A. Atangana and S. Qureshi,
Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fractals, 123 (2019), 320-337.
doi: 10.1016/j.chaos.2019.04.020. |
[7] |
A. Atangana and A. Shafiq,
Differential and integral operators with constant fractional order and variable fractional dimension, Chaos Solitons Fractals, 127 (2019), 226-243.
doi: 10.1016/j.chaos.2019.06.014. |
[8] |
R. G. Bartle, A Modern Theory of Integration, Graduate Studies in Mathematics, 32. American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/032. |
[9] |
D. A. Benson, The Fractional Advection-Dispersion Equation: Development and Application, Ph.D. thesis, University of Nevada in Reno, 1998. Google Scholar |
[10] |
B. Bongiorno,
Relatively weakly compact sets in the Denjoy space, J. Math. Study, 27 (1994), 37-44.
|
[11] |
B. Bongiorno and T. V. Panchapagesan,
On the Alexiewicz topology of the Denjoy space, Real Anal. Exchange, 21 (1995/96), 604-614.
doi: 10.2307/44152670. |
[12] |
K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[13] |
J. J. Duistermaat and J. A. C. Kolk, Distributions. Theory and Applications, Birkhäuser Boston, Inc., Boston, MA, 2010.
doi: 10.1007/978-0-8176-4675-2. |
[14] |
I. M. Gel'fand and G. E. Shilov, Generalized Functions, Volume 1: Properties and Operations, Academic Press, New York-London, 1964.
doi: 10.1090/chel/377.![]() ![]() |
[15] |
W. G. Glöckle and T. F. Nonnenmacher,
A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68 (1995), 46-53.
doi: 10.1016/s0006-3495(95)80157-8. |
[16] |
J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, Eur. Phys. J. Plus, 132 (2017), 21 pp.
doi: 10.1140/epjp/i2017-11293-3. |
[17] |
J. F. Gómez-Aguilar, H. Yépez-Martínez, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, J. M. Reyes and I. O. Sosa, Series solution for the time-fractional coupled mKdV equation using the homotopy analysis method, Math. Probl. Eng., 2016 (2016), Art. ID 7047126, 8 pp.
doi: 10.1155/2016/7047126. |
[18] |
R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994.
doi: 10.1090/gsm/004. |
[19] |
L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2$^{nd}$ edition, Classics in Mathematics, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-96750-4. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
doi: 10.1016/s0304-0208(06)x8001-5. |
[21] |
D. S. Kurtz and C. W. Swartz, Theories of Integration. The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane, Series in Real Analysis, 9. World Scientific Publishing Co., Inc., River Edge, N.J., 2004.
doi: 10.1142/5538. |
[22] |
C. K. Li,
Several results of fractional derivatives in $D'(R_+)$, Fract. Calc. Appl. Anal., 18 (2015), 192-207.
doi: 10.1515/fca-2015-0013. |
[23] |
R. Marks and M. Hall,
Differintegral interpolation from a bandlimited signal's samples, IEEE Trans. Acoust., Speech, Signal Processing, 29 (1981), 872-877.
doi: 10.1109/tassp.1981.1163636. |
[24] |
R. M. McLeod, The Generalized Riemann Integral, Carus Math. Monographs, 20. Mathematical Association of America, Washington, D.C., 1980.
doi: 10.5948/upo9781614440208. |
[25] |
E. J. McShane,
A unified theory of integration, Amer. Math. Monthly, 80 (1973), 349-359.
doi: 10.1080/00029890.1973.11993291. |
[26] |
G. A. Monteiro, A. Slavík and M. Tvrdý, Kurzweil-Stieltjes Integral. Theory and Applications, Series in Real Analysis, 15. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
doi: 10.1142/9432. |
[27] |
V. F. Morales-Delgado, M. A. Taneco-Hernández and J. F. Gómez-Aguilar, On the solutions of fractional order of evolution equations, Eur. Phys. J. Plus, 132 (2017), 14 pp.
doi: 10.1140/epjp/i2017-11341-0. |
[28] |
W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. |
[29] |
W. Rudin,
Representation of functions by convolutions, J. Math. Mech., 7 (1958), 103-115.
doi: 10.1512/iumj.1958.7.57009 . |
[30] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[31] |
Š. Schwabik, Generalized Ordinary Differential Equations, Series in Real Analysis, 5. World Scientific Publishing Co., Inc., River Edge, N.J., 1992.
doi: 10.1142/1875. |
[32] |
E. Talvila, Convolutions with the continuous primitive integral, Abstr. Appl. Anal., 2009 (2009), Art. ID 307404, 18 pp.
doi: 10.1155/2009/307404. |
[33] |
E. Talvila,
Henstock-Kurzweil Fourier transforms, Illinois J. Math., 46 (2002), 1207-1226.
doi: 10.1215/ijm/1258138475. |
[34] |
E. Talvila,
The distributional Denjoy integral, Real Anal. Exchange, 33 (2008), 51-82.
doi: 10.14321/realanalexch.33.1.0051. |
[35] |
A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Front. Phys., 5 (2017), 9 pp.
doi: 10.3389/fphy.2017.00052. |
[36] |
G. J. Ye and W. Liu,
The distributional Henstock-Kurzweil integral and applications, Monatsh. Math., 181 (2016), 975-989.
doi: 10.1007/s00605-015-0853-1. |
[37] |
G. J. Ye and W. Liu,
The distributional Henstock-Kurzweil integral and applications: A survey, J. Math. Study, 49 (2016), 433-448.
doi: 10.4208/jms.v49n4.16.06. |
[38] |
H. Yépez-Martínez, J. F. Gómez-Aguilar, I. O. Sosa, J. M. Reyes and J. Torres-Jiménez,
The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mex. Fís., 62 (2016), 310-316.
|
[39] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, N.J., 2014.
doi: 10.1142/9069. |
show all references
References:
[1] |
A. Alexiewicz,
Linear functionals on Denjoy-integrable functions, Colloquium Math., 1 (1948), 289-293.
doi: 10.4064/cm-1-4-289-293. |
[2] |
A. Atangana,
Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A., 505 (2018), 688-706.
doi: 10.1016/j.physa.2018.03.056. |
[3] |
A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 22 pp.
doi: 10.1140/epjp/i2018-12021-3. |
[4] |
A. Atangana and J. F. Gómez-Aguilar,
Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Solitons Fractals, 114 (2018), 516-535.
doi: 10.1016/j.chaos.2018.07.033. |
[5] |
A. Atangana and J. F. Gómez-Aguilar,
Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.
doi: 10.1002/num.22195. |
[6] |
A. Atangana and S. Qureshi,
Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fractals, 123 (2019), 320-337.
doi: 10.1016/j.chaos.2019.04.020. |
[7] |
A. Atangana and A. Shafiq,
Differential and integral operators with constant fractional order and variable fractional dimension, Chaos Solitons Fractals, 127 (2019), 226-243.
doi: 10.1016/j.chaos.2019.06.014. |
[8] |
R. G. Bartle, A Modern Theory of Integration, Graduate Studies in Mathematics, 32. American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/032. |
[9] |
D. A. Benson, The Fractional Advection-Dispersion Equation: Development and Application, Ph.D. thesis, University of Nevada in Reno, 1998. Google Scholar |
[10] |
B. Bongiorno,
Relatively weakly compact sets in the Denjoy space, J. Math. Study, 27 (1994), 37-44.
|
[11] |
B. Bongiorno and T. V. Panchapagesan,
On the Alexiewicz topology of the Denjoy space, Real Anal. Exchange, 21 (1995/96), 604-614.
doi: 10.2307/44152670. |
[12] |
K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[13] |
J. J. Duistermaat and J. A. C. Kolk, Distributions. Theory and Applications, Birkhäuser Boston, Inc., Boston, MA, 2010.
doi: 10.1007/978-0-8176-4675-2. |
[14] |
I. M. Gel'fand and G. E. Shilov, Generalized Functions, Volume 1: Properties and Operations, Academic Press, New York-London, 1964.
doi: 10.1090/chel/377.![]() ![]() |
[15] |
W. G. Glöckle and T. F. Nonnenmacher,
A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68 (1995), 46-53.
doi: 10.1016/s0006-3495(95)80157-8. |
[16] |
J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, Eur. Phys. J. Plus, 132 (2017), 21 pp.
doi: 10.1140/epjp/i2017-11293-3. |
[17] |
J. F. Gómez-Aguilar, H. Yépez-Martínez, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, J. M. Reyes and I. O. Sosa, Series solution for the time-fractional coupled mKdV equation using the homotopy analysis method, Math. Probl. Eng., 2016 (2016), Art. ID 7047126, 8 pp.
doi: 10.1155/2016/7047126. |
[18] |
R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994.
doi: 10.1090/gsm/004. |
[19] |
L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2$^{nd}$ edition, Classics in Mathematics, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-96750-4. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
doi: 10.1016/s0304-0208(06)x8001-5. |
[21] |
D. S. Kurtz and C. W. Swartz, Theories of Integration. The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane, Series in Real Analysis, 9. World Scientific Publishing Co., Inc., River Edge, N.J., 2004.
doi: 10.1142/5538. |
[22] |
C. K. Li,
Several results of fractional derivatives in $D'(R_+)$, Fract. Calc. Appl. Anal., 18 (2015), 192-207.
doi: 10.1515/fca-2015-0013. |
[23] |
R. Marks and M. Hall,
Differintegral interpolation from a bandlimited signal's samples, IEEE Trans. Acoust., Speech, Signal Processing, 29 (1981), 872-877.
doi: 10.1109/tassp.1981.1163636. |
[24] |
R. M. McLeod, The Generalized Riemann Integral, Carus Math. Monographs, 20. Mathematical Association of America, Washington, D.C., 1980.
doi: 10.5948/upo9781614440208. |
[25] |
E. J. McShane,
A unified theory of integration, Amer. Math. Monthly, 80 (1973), 349-359.
doi: 10.1080/00029890.1973.11993291. |
[26] |
G. A. Monteiro, A. Slavík and M. Tvrdý, Kurzweil-Stieltjes Integral. Theory and Applications, Series in Real Analysis, 15. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
doi: 10.1142/9432. |
[27] |
V. F. Morales-Delgado, M. A. Taneco-Hernández and J. F. Gómez-Aguilar, On the solutions of fractional order of evolution equations, Eur. Phys. J. Plus, 132 (2017), 14 pp.
doi: 10.1140/epjp/i2017-11341-0. |
[28] |
W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. |
[29] |
W. Rudin,
Representation of functions by convolutions, J. Math. Mech., 7 (1958), 103-115.
doi: 10.1512/iumj.1958.7.57009 . |
[30] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[31] |
Š. Schwabik, Generalized Ordinary Differential Equations, Series in Real Analysis, 5. World Scientific Publishing Co., Inc., River Edge, N.J., 1992.
doi: 10.1142/1875. |
[32] |
E. Talvila, Convolutions with the continuous primitive integral, Abstr. Appl. Anal., 2009 (2009), Art. ID 307404, 18 pp.
doi: 10.1155/2009/307404. |
[33] |
E. Talvila,
Henstock-Kurzweil Fourier transforms, Illinois J. Math., 46 (2002), 1207-1226.
doi: 10.1215/ijm/1258138475. |
[34] |
E. Talvila,
The distributional Denjoy integral, Real Anal. Exchange, 33 (2008), 51-82.
doi: 10.14321/realanalexch.33.1.0051. |
[35] |
A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Front. Phys., 5 (2017), 9 pp.
doi: 10.3389/fphy.2017.00052. |
[36] |
G. J. Ye and W. Liu,
The distributional Henstock-Kurzweil integral and applications, Monatsh. Math., 181 (2016), 975-989.
doi: 10.1007/s00605-015-0853-1. |
[37] |
G. J. Ye and W. Liu,
The distributional Henstock-Kurzweil integral and applications: A survey, J. Math. Study, 49 (2016), 433-448.
doi: 10.4208/jms.v49n4.16.06. |
[38] |
H. Yépez-Martínez, J. F. Gómez-Aguilar, I. O. Sosa, J. M. Reyes and J. Torres-Jiménez,
The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mex. Fís., 62 (2016), 310-316.
|
[39] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, N.J., 2014.
doi: 10.1142/9069. |
[1] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[2] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[3] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[4] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[5] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[6] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[7] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[8] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[9] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[10] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[11] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[12] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[13] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[14] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[15] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[16] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[17] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[18] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[19] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[20] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
Impact Factor: 0.263
Tools
Article outline
[Back to Top]