# American Institute of Mathematical Sciences

• Previous Article
Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity
• ERA Home
• This Issue
• Next Article
Riemann-Liouville derivative over the space of integrable distributions
June  2020, 28(2): 589-597. doi: 10.3934/era.2020031

## Proof of some conjectures involving quadratic residues

 1 St. Petersburg Department of Steklov, Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023, St. Petersburg, Russia 2 Department of Mathematics, Nanjing University, Nanjing 210093, China

* Corresponding author: Zhi-Wei Sun

Received  December 2019 Revised  March 2020 Published  April 2020

Fund Project: The work is supported by the NSFC-RFBR Cooperation and Exchange Program (grants NSFC 11811530072 and RFBR 18-51-53020-GFEN-a). The second author is also supported by the Natural Science Foundation of China (grant no. 11971222)

We confirm several conjectures of Sun involving quadratic residues modulo odd primes. For any prime
 $p\equiv 1\ ({\rm{mod}}\ 4)$
and integer
 $a\not\equiv0\ ({\rm{mod}}\ p)$
, we prove that
 $(-1)^{|\{1 \leq k<\frac p4:\ (\frac kp) = -1\}|}\prod\limits_{1 \leq j and that $ \begin{array}{*{35}{l}}\left|\left\{(j, k):\ 1 \leq j\{ak^2\}_p\right\}\right| \\ +\left|\left\{(j, k):\ 1 \leq j\frac p2\right\}\right| \\ \equiv \left|\left\{1 \leq k<\frac p4:\ \left(\frac kp\right) = \left(\frac ap\right)\right\}\right|\ ({\rm{mod}}\ 2), \end{array}$where $ (\frac{a}p) $is the Legendre symbol, $ \varepsilon_p $and $ h(p) $are the fundamental unit and the class number of the real quadratic field $ \mathbb Q(\sqrt p) $respectively, and $ \{x\}_p $is the least nonnegative residue of an integer $ x $modulo $ p $. Also, for any prime $ p\equiv3\ ({\rm{mod}}\ 4) $and $ {\delta} = 1, 2 $, we determine $ (-1)^{\left|\left\{(j, k): \ 1 \leq j\{{\delta} T_k\}_p\right\}\right|}, $where $ T_m $denotes the triangular number $ m(m+1)/2 \$
.
Citation: Fedor Petrov, Zhi-Wei Sun. Proof of some conjectures involving quadratic residues. Electronic Research Archive, 2020, 28 (2) : 589-597. doi: 10.3934/era.2020031
##### References:

show all references

##### References:

2020 Impact Factor: 1.833