• Previous Article
    Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping
  • ERA Home
  • This Issue
  • Next Article
    Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity
June  2020, 28(2): 627-649. doi: 10.3934/era.2020033

Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations

Department of Mathematics, University of Rochester, Rochester, NY 14627, USA

* Corresponding author

Received  December 2019 Published  April 2020

Fund Project: The first author is supported by a grant from the Simons Foundation #359727

In this paper, our goal is to improve the local well-posedness theory for certain generalized Boussinesq equations by revisiting bilinear estimates related to the Schrödinger equation. Moreover, we propose a novel, automated procedure to handle the summation argument for these bounds.

Citation: Dan-Andrei Geba, Evan Witz. Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28 (2) : 627-649. doi: 10.3934/era.2020033
References:
[1]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[2]

J. E. CollianderJ.-M. DelortC. E. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[3]

Y. F. Fang and M. G. Grillakis, Existence and uniqueness for Boussinesq type equations on a circle, Comm. Partial Differential Equations, 21 (1996), 1253-1277.  doi: 10.1080/03605309608821225.  Google Scholar

[4]

L. G. Farah, Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation, Commun. Pure Appl. Anal., 8 (2009), 1521-1539.  doi: 10.3934/cpaa.2009.8.1521.  Google Scholar

[5]

L. G. Farah, Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009), 52-73.  doi: 10.1080/03605300802682283.  Google Scholar

[6]

N. Kishimoto, Sharp local well-posedness for the "good" Boussinesq equation, J. Differential Equations, 254 (2013), 2393-2433.  doi: 10.1016/j.jde.2012.12.008.  Google Scholar

[7]

N. Kishimoto and K. Tsugawa, Local well-posedness for quadratic nonlinear Schrödinger equations and the "good" Boussinesq equation, Differential Integral Equations, 23, (2010), 463–493. Google Scholar

[8]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[9]

M. Okamoto, Norm inflation for the generalized Boussinesq and Kawahara equations, Nonlinear Anal., 157 (2017), 44-61.  doi: 10.1016/j.na.2017.03.011.  Google Scholar

[10]

G. Staffilani, Quadratic forms for a 2-D semilinear Schrödinger equation, Duke Math. J., 86, (1997), 79–107. doi: 10.1215/S0012-7094-97-08603-8.  Google Scholar

[11]

T. Tao, Multilinear weighted convolution of $L^2$-functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[12]

T. Tao, Nonlinear Dispersive Equations, Local and Global Analysis, Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.  Google Scholar

show all references

References:
[1]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[2]

J. E. CollianderJ.-M. DelortC. E. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[3]

Y. F. Fang and M. G. Grillakis, Existence and uniqueness for Boussinesq type equations on a circle, Comm. Partial Differential Equations, 21 (1996), 1253-1277.  doi: 10.1080/03605309608821225.  Google Scholar

[4]

L. G. Farah, Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation, Commun. Pure Appl. Anal., 8 (2009), 1521-1539.  doi: 10.3934/cpaa.2009.8.1521.  Google Scholar

[5]

L. G. Farah, Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009), 52-73.  doi: 10.1080/03605300802682283.  Google Scholar

[6]

N. Kishimoto, Sharp local well-posedness for the "good" Boussinesq equation, J. Differential Equations, 254 (2013), 2393-2433.  doi: 10.1016/j.jde.2012.12.008.  Google Scholar

[7]

N. Kishimoto and K. Tsugawa, Local well-posedness for quadratic nonlinear Schrödinger equations and the "good" Boussinesq equation, Differential Integral Equations, 23, (2010), 463–493. Google Scholar

[8]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[9]

M. Okamoto, Norm inflation for the generalized Boussinesq and Kawahara equations, Nonlinear Anal., 157 (2017), 44-61.  doi: 10.1016/j.na.2017.03.011.  Google Scholar

[10]

G. Staffilani, Quadratic forms for a 2-D semilinear Schrödinger equation, Duke Math. J., 86, (1997), 79–107. doi: 10.1215/S0012-7094-97-08603-8.  Google Scholar

[11]

T. Tao, Multilinear weighted convolution of $L^2$-functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[12]

T. Tao, Nonlinear Dispersive Equations, Local and Global Analysis, Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[5]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[8]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[12]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[13]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[14]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

 Impact Factor: 0.263

Metrics

  • PDF downloads (49)
  • HTML views (249)
  • Cited by (0)

Other articles
by authors

[Back to Top]