June  2020, 28(2): 795-805. doi: 10.3934/era.2020040

On Seshadri constants and point-curve configurations

Department of Mathematics, Pedagogical University of Cracow, Podchorążych 2, PL-30-084 Kraków, Poland

Received  February 2020 Revised  April 2020 Published  May 2020

In the note we study the multipoint Seshadri constants of $ \mathcal{O}_{\mathbb{P}^{2}_{\mathbb{C}}}(1) $ centered at singular loci of certain curve arrangements in the complex projective plane. Our first aim is to show that the values of Seshadri constants can be approximated with use of a combinatorial invariant which we call the configurational Seshadri constant. We study specific examples of point-curve configurations for which we provide actual values of the associated Seshadri constants. In particular, we provide an example based on Hesse point-conic configuration for which the associated Seshadri constant is computed by a line. This shows that multipoint Seshadri constants are not purely combinatorial.

Citation: Marek Janasz, Piotr Pokora. On Seshadri constants and point-curve configurations. Electronic Research Archive, 2020, 28 (2) : 795-805. doi: 10.3934/era.2020040
References:
[1]

Th. Bauer, Ł. Farnik, K. Hanumanthu and J. Huizenga, Mini-Workshop: Seshadri Constants, Oberwolfach Report No. $53/2019$, 2020. Google Scholar

[2]

M. Cuntz, Simplicial arrangements with up to 27 lines, Discrete Comput. Geom., 48 (2012), 682-701.  doi: 10.1007/s00454-012-9423-7.  Google Scholar

[3]

I. Dolgachev, A. Laface, U. Persson and G. Urzúa, Chilean configuration of conics, lines and points, Preprint. Google Scholar

[4]

F. Hirzebruch, Arrangements of lines and algebraic surfaces, Arithmetic and Geometry, Vol. II, Progr. Math., Birkhäuser, Boston, Mass., 36 (1983), 113–140.  Google Scholar

[5]

D. Kohel, X. Roulleau and A. Sarti, A special configuration of 12 conics and generalized Kummer surfaces, Preprint. Google Scholar

[6]

K. Oguiso, Seshadri constants in a family of surfaces, Math. Ann., 323 (2002), 625-631.  doi: 10.1007/s002080200317.  Google Scholar

[7]

P. Pokora, Seshadri constants and special point configurations in the projective plane, Rocky Mountain J. Math., 49 (2019), 963-978.  doi: 10.1216/RMJ-2019-49-3-963.  Google Scholar

[8]

P. PokoraX. Roulleau and T. Szemberg, Bounded negativity, Harbourne constants and transversal arrangements of curves, Ann. Inst. Fourier (Grenoble), 67 (2017), 2719-2735.  doi: 10.5802/aif.3149.  Google Scholar

[9]

P. Pokora and T. Szemberg, Conic-line arrangements in the complex projective plane, arXiv: 2002.01760. Google Scholar

[10]

B. Strycharz-Szemberg and T. Szemberg, Remarks on the Nagata conjecture, Serdica Math. J., 30 (2004), 405-430.   Google Scholar

show all references

References:
[1]

Th. Bauer, Ł. Farnik, K. Hanumanthu and J. Huizenga, Mini-Workshop: Seshadri Constants, Oberwolfach Report No. $53/2019$, 2020. Google Scholar

[2]

M. Cuntz, Simplicial arrangements with up to 27 lines, Discrete Comput. Geom., 48 (2012), 682-701.  doi: 10.1007/s00454-012-9423-7.  Google Scholar

[3]

I. Dolgachev, A. Laface, U. Persson and G. Urzúa, Chilean configuration of conics, lines and points, Preprint. Google Scholar

[4]

F. Hirzebruch, Arrangements of lines and algebraic surfaces, Arithmetic and Geometry, Vol. II, Progr. Math., Birkhäuser, Boston, Mass., 36 (1983), 113–140.  Google Scholar

[5]

D. Kohel, X. Roulleau and A. Sarti, A special configuration of 12 conics and generalized Kummer surfaces, Preprint. Google Scholar

[6]

K. Oguiso, Seshadri constants in a family of surfaces, Math. Ann., 323 (2002), 625-631.  doi: 10.1007/s002080200317.  Google Scholar

[7]

P. Pokora, Seshadri constants and special point configurations in the projective plane, Rocky Mountain J. Math., 49 (2019), 963-978.  doi: 10.1216/RMJ-2019-49-3-963.  Google Scholar

[8]

P. PokoraX. Roulleau and T. Szemberg, Bounded negativity, Harbourne constants and transversal arrangements of curves, Ann. Inst. Fourier (Grenoble), 67 (2017), 2719-2735.  doi: 10.5802/aif.3149.  Google Scholar

[9]

P. Pokora and T. Szemberg, Conic-line arrangements in the complex projective plane, arXiv: 2002.01760. Google Scholar

[10]

B. Strycharz-Szemberg and T. Szemberg, Remarks on the Nagata conjecture, Serdica Math. J., 30 (2004), 405-430.   Google Scholar

[1]

Koichi Osaki, Hirotoshi Satoh, Shigetoshi Yazaki. Towards modelling spiral motion of open plane curves. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1009-1022. doi: 10.3934/dcdss.2015.8.1009

[2]

Minoru Murai, Waichiro Matsumoto, Shoji Yotsutani. Representation formula for the plane closed elastic curves. Conference Publications, 2013, 2013 (special) : 565-585. doi: 10.3934/proc.2013.2013.565

[3]

Víctor Jiménez López, Gabriel Soler López. A topological characterization of ω-limit sets for continuous flows on the projective plane. Conference Publications, 2001, 2001 (Special) : 254-258. doi: 10.3934/proc.2001.2001.254

[4]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[5]

A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100

[6]

Doan The Hieu, Tran Le Nam. The classification of constant weighted curvature curves in the plane with a log-linear density. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1641-1652. doi: 10.3934/cpaa.2014.13.1641

[7]

Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010

[8]

Kazuo Aoki, Yoshiaki Abe. Stagnation-point flow of a rarefied gas impinging obliquely on a plane wall. Kinetic & Related Models, 2011, 4 (4) : 935-954. doi: 10.3934/krm.2011.4.935

[9]

Héctor A. Tabares-Ospina, Mauricio Osorio. Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1895-1905. doi: 10.3934/dcdsb.2020008

[10]

Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287

[11]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[12]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[13]

Alessandro Fonda, Rafael Ortega. Positively homogeneous equations in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 475-482. doi: 10.3934/dcds.2000.6.475

[14]

Jorge Groisman. Expansive homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213

[15]

J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela. Elastic Herglotz functions in the plane. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1495-1505. doi: 10.3934/cpaa.2010.9.1495

[16]

Jorge Tejero. Reconstruction of rough potentials in the plane. Inverse Problems & Imaging, 2019, 13 (4) : 863-878. doi: 10.3934/ipi.2019039

[17]

K. Q. Lan, G. C. Yang. Optimal constants for two point boundary value problems. Conference Publications, 2007, 2007 (Special) : 624-633. doi: 10.3934/proc.2007.2007.624

[18]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[19]

Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455

[20]

Igor E. Pritsker and Richard S. Varga. Weighted polynomial approximation in the complex plane. Electronic Research Announcements, 1997, 3: 38-44.

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (13)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]