June  2020, 28(2): 821-836. doi: 10.3934/era.2020042

A hybridized weak Galerkin finite element scheme for general second-order elliptic problems

1. 

School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang 524048, Guangdong, China

2. 

School of Mathematical Science, South China Normal University, Guangzhou 520631, Guangdong, China

3. 

Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China

* Corresponding author: Yanping Chen

Received  February 2020 Revised  March 2020 Published  May 2020

Fund Project: The first author is supported by the Natural Science Foundation of Guangdong Province (No. 2016A030307017) and the Natural Science Foundation of Lingnan Normal University (No. ZL2038); The second author is supported by the State Key Program of National Natural Science Foundation of China (No.11931003) and the National Natural Science Foundation of China (No.41974133, No.11671157); The third author is supported by National Natural Science Foundation of China (No.11971410)

In this paper, a hybridized weak Galerkin (HWG) finite element scheme is presented for solving the general second-order elliptic problems. The HWG finite element scheme is based on the use of a Lagrange multiplier defined on the element boundaries. The Lagrange multiplier provides a numerical approximation for certain derivatives of the exact solution. It is worth pointing out that a skew symmetric form has been used for handling the convection term to get the stability in the HWG formulation. Optimal order error estimates are derived for the corresponding HWG finite element approximations. A Schur complement formulation of the HWG method is introduced for implementation purpose.

Citation: Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042
References:
[1]

C. E. Baumann and J. T. Oden, A discontinuous $hp$ finite elelnent method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 175 (1999), 311-341.  doi: 10.1016/S0045-7825(98)00359-4.  Google Scholar

[2]

H. Berestycki and J. Wei, On least energy solutions to a semilinear elliptic equation in a strip, Discrete Contin. Dyn. Syst., 28 (2010), 1083-1099.  doi: 10.3934/dcds.2010.28.1083.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[5]

F. BrezziJ. Douglas and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[6]

B. CockburnB. DongJ. GuzmanM. Restelli and R. Sacco, A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction, SIAM J. Sci. Comput., 31 (2019), 3827-3846.  doi: 10.1137/080728810.  Google Scholar

[7]

B. CockburnJ. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), 1319-1365.  doi: 10.1137/070706616.  Google Scholar

[8]

B. Cockburn and K. Shi, Conditions for superconvergence of HDG methods for Stokes flow, Math. Comp., 82 (2013), 651-671.  doi: 10.1090/S0025-5718-2012-02644-5.  Google Scholar

[9]

J. I. DíazJ. Hernández and Y. Sh. Ilyasov, On the exact multiplicity of stable ground states of non-Lipschitz semilinear elliptic equations for some classes of starshaped sets, Adv. Nonlinear Anal., 9 (2020), 1046-1065.   Google Scholar

[10]

J. Jr Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52.  doi: 10.1090/S0025-5718-1985-0771029-9.  Google Scholar

[11]

A. ErnaA. F. Stephansena and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, J. Comput. Appl. Math., 234 (2010), 114-130.  doi: 10.1016/j.cam.2009.12.009.  Google Scholar

[12]

R. Lazarov and S. Tomov, A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations, Computat. Geosci., 6 (2002), 483-503.  doi: 10.1023/A:1021247300362.  Google Scholar

[13]

Y. Li and J. Bao, Semilinear elliptic system with boundary singularity, Discrete Contin. Dyn. Syst., 40 (2020), 2189-2212.  doi: 10.3934/dcds.2020111.  Google Scholar

[14]

G. Li and Y. Chen, A new weak Galerkin finite element method for general second-order elliptic problems, J. Comput. Appl. Math., 344 (2018), 701-715.  doi: 10.1016/j.cam.2018.05.021.  Google Scholar

[15]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Meth. Part. D E, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[16]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345.  doi: 10.1016/j.cam.2016.01.004.  Google Scholar

[17]

V. Vougalter and V. Volpert, On the solvability conditions for the diffusion equation with convection terms, Commun. Pure Appl. Anal., 11 (2012), 365-373.  doi: 10.3934/cpaa.2012.11.365.  Google Scholar

[18]

C. Wang and J. Wang, A hybridized weak Galerkin finite element method for the Biharmonic equation, Int. J. Numer. Anal. Model., 12 (2015), 302-317.   Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[21]

J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[22]

L. Wang and D. Ye, Concentrating solutions for an anisotropic elliptic problem with large exponent, Discrete Contin. Dyn. Syst., 35 (2015), 3771-3797.  doi: 10.3934/dcds.2015.35.3771.  Google Scholar

[23]

P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal., 12 (2013), 785-802.  doi: 10.3934/cpaa.2013.12.785.  Google Scholar

[24]

Q. ZhaiR. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.  doi: 10.1007/s11425-015-5030-4.  Google Scholar

[25]

Y. Zhang and L. Shi, Concentrating solutions for a planar elliptic problem with large nonlinear exponent and Robin boundary condition, Adv. Nonlinear Anal., 8 (2019), 1252-1285.   Google Scholar

[26]

R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the Biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.  doi: 10.1007/s10915-014-9945-7.  Google Scholar

show all references

References:
[1]

C. E. Baumann and J. T. Oden, A discontinuous $hp$ finite elelnent method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 175 (1999), 311-341.  doi: 10.1016/S0045-7825(98)00359-4.  Google Scholar

[2]

H. Berestycki and J. Wei, On least energy solutions to a semilinear elliptic equation in a strip, Discrete Contin. Dyn. Syst., 28 (2010), 1083-1099.  doi: 10.3934/dcds.2010.28.1083.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[5]

F. BrezziJ. Douglas and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[6]

B. CockburnB. DongJ. GuzmanM. Restelli and R. Sacco, A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction, SIAM J. Sci. Comput., 31 (2019), 3827-3846.  doi: 10.1137/080728810.  Google Scholar

[7]

B. CockburnJ. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), 1319-1365.  doi: 10.1137/070706616.  Google Scholar

[8]

B. Cockburn and K. Shi, Conditions for superconvergence of HDG methods for Stokes flow, Math. Comp., 82 (2013), 651-671.  doi: 10.1090/S0025-5718-2012-02644-5.  Google Scholar

[9]

J. I. DíazJ. Hernández and Y. Sh. Ilyasov, On the exact multiplicity of stable ground states of non-Lipschitz semilinear elliptic equations for some classes of starshaped sets, Adv. Nonlinear Anal., 9 (2020), 1046-1065.   Google Scholar

[10]

J. Jr Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52.  doi: 10.1090/S0025-5718-1985-0771029-9.  Google Scholar

[11]

A. ErnaA. F. Stephansena and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, J. Comput. Appl. Math., 234 (2010), 114-130.  doi: 10.1016/j.cam.2009.12.009.  Google Scholar

[12]

R. Lazarov and S. Tomov, A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations, Computat. Geosci., 6 (2002), 483-503.  doi: 10.1023/A:1021247300362.  Google Scholar

[13]

Y. Li and J. Bao, Semilinear elliptic system with boundary singularity, Discrete Contin. Dyn. Syst., 40 (2020), 2189-2212.  doi: 10.3934/dcds.2020111.  Google Scholar

[14]

G. Li and Y. Chen, A new weak Galerkin finite element method for general second-order elliptic problems, J. Comput. Appl. Math., 344 (2018), 701-715.  doi: 10.1016/j.cam.2018.05.021.  Google Scholar

[15]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Meth. Part. D E, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[16]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345.  doi: 10.1016/j.cam.2016.01.004.  Google Scholar

[17]

V. Vougalter and V. Volpert, On the solvability conditions for the diffusion equation with convection terms, Commun. Pure Appl. Anal., 11 (2012), 365-373.  doi: 10.3934/cpaa.2012.11.365.  Google Scholar

[18]

C. Wang and J. Wang, A hybridized weak Galerkin finite element method for the Biharmonic equation, Int. J. Numer. Anal. Model., 12 (2015), 302-317.   Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[21]

J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[22]

L. Wang and D. Ye, Concentrating solutions for an anisotropic elliptic problem with large exponent, Discrete Contin. Dyn. Syst., 35 (2015), 3771-3797.  doi: 10.3934/dcds.2015.35.3771.  Google Scholar

[23]

P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal., 12 (2013), 785-802.  doi: 10.3934/cpaa.2013.12.785.  Google Scholar

[24]

Q. ZhaiR. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.  doi: 10.1007/s11425-015-5030-4.  Google Scholar

[25]

Y. Zhang and L. Shi, Concentrating solutions for a planar elliptic problem with large nonlinear exponent and Robin boundary condition, Adv. Nonlinear Anal., 8 (2019), 1252-1285.   Google Scholar

[26]

R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the Biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.  doi: 10.1007/s10915-014-9945-7.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[11]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[12]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[15]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[16]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[17]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[18]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

 Impact Factor: 0.263

Metrics

  • PDF downloads (114)
  • HTML views (240)
  • Cited by (0)

Other articles
by authors

[Back to Top]