# American Institute of Mathematical Sciences

June  2020, 28(2): 837-851. doi: 10.3934/era.2020043

## Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method

 1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China 3 Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China 4 School of Science, Xi'an Jiaotong University, Xi'an 710049, China 5 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

* Corresponding authors

Received  December 2019 Revised  March 2020 Published  May 2020

In this paper, we introduce a dimension splitting method for simulating the air flow state of the aeroengine turbine fan. Based on the geometric model of the fan blade, the dimension splitting method establishes a semi-geodesic coordinate system. Under such coordinate system, the Navier-Stokes equations are reformulated into the combination of membrane operator equations on two-dimensional manifolds and bending operator equations along the hub circle. Using Euler central difference scheme to approximate the third variable, the new form of Navier-Stokes equations is splitting into a set of two-dimensional sub-problems. Solving these sub-problems by alternate iteration, it follows an approximate solution to Navier-Stokes equations. Furthermore, we conduct a numerical experiment to show that the dimension splitting method has a good performance by comparing with the traditional methods. Finally, we give the simulation results of the pressure and flow state of the fan blade.

Citation: Guoliang Ju, Can Chen, Rongliang Chen, Jingzhi Li, Kaitai Li, Shaohui Zhang. Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method. Electronic Research Archive, 2020, 28 (2) : 837-851. doi: 10.3934/era.2020043
##### References:

show all references

##### References:
Aeroengine turbine fan
The channel of impellers when $\Theta = 0$
One of blade in R-coordinate system
The mesh of central surface generated by different methods
The comparisons of velocity magnitude calculated by different methods
The comparisons of velocity $u_1$ calculated by different methods
The comparisons of velocity $u_2$ calculated by different methods
The comparisons of velocity $u_3$ calculated by different methods
The comparisons of Pressure calculated by different methods
The pressure distribution of positive pressure surface
The pressure distribution of negative pressure surface
The 3D model of pressure distribution of positive pressure surface
The 3D model of pressure distribution of negative pressure surface
The blade mesh in R-coordinate system
Velocity distribution at outlet
 [1] Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609 [2] Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143 [3] Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 [4] Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 [5] Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255 [6] Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 [7] Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 [8] Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 [9] C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 [10] Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 [11] Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 [12] Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269 [13] Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655 [14] Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537 [15] Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277 [16] Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045 [17] Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207 [18] Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027 [19] Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039 [20] Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

2020 Impact Factor: 1.833