• Previous Article
    A $ C^0P_2 $ time-stepping virtual element method for linear wave equations on polygonal meshes
  • ERA Home
  • This Issue
  • Next Article
    Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data
June  2020, 28(2): 897-910. doi: 10.3934/era.2020047

Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations

School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin, China

* Corresponding author

Received  February 2020 Revised  April 2020 Published  June 2020

Fund Project: This work is supported by Technology Research Project of Jilin Provincial Department of Education(JJKH20190634KJ)

In this paper, a two-grid finite element scheme for semilinear parabolic integro-differential equations is proposed. In the two-grid scheme, continuous linear element is used for spatial discretization, while Crank-Nicolson scheme and Leap-Frog scheme are ultilized for temporal discretization. Based on the combination of the interpolation and Ritz projection technique, some superclose estimates between the interpolation and the numerical solution in the $ H^1 $-norm are derived. Notice that we only need to solve nonlinear problem once in the two-grid scheme, namely, the first time step on the coarse-grid space. A numerical example is presented to verify the effectiveness of the proposed two-grid scheme.

Citation: Changling Xu, Tianliang Hou. Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28 (2) : 897-910. doi: 10.3934/era.2020047
References:
[1]

J. R. Cannon and Y. P. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), 595-607.  doi: 10.1137/0727036.  Google Scholar

[2]

L. P. Chen and Y. P. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383-401.  doi: 10.1007/s10915-011-9469-3.  Google Scholar

[3]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems Ⅳ: Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729-1749.  doi: 10.1137/0732078.  Google Scholar

[4]

S. M. F. Garcia, Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: The discrete-time case, Numer. Methods Partial Differ. Equ., 10 (1994), 149-169.  doi: 10.1002/num.1690100203.  Google Scholar

[5]

T. L. HouW. Z. JiangY. T. Yang and H. T. Leng, Two-grid $P^2_0$-$P_1$ mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations, Appl. Numer. Math., 137 (2019), 136-150.  doi: 10.1016/j.apnum.2018.11.009.  Google Scholar

[6]

M.-N. Le Roux and V. Thomée, Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal., 26 (1989), 1291-1309.  doi: 10.1137/0726075.  Google Scholar

[7] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.   Google Scholar
[8]

W. LiuH. Rui and Y. P. Bao, Two kinds of two-grid algorithms for finite difference solutions of semilinear parabolic equations, J. Sys. Sci. Math. Sci., 30 (2010), 181-190.   Google Scholar

[9]

P. K. Moore, A posterior error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal., 31 (1994), 149-169.  doi: 10.1137/0731008.  Google Scholar

[10]

D. Y. Shi and P. C. Mu, Superconvergence analysis of a two-grid method for semilinear parabolic equations, Appl. Math. Lett., 84 (2018), 34-41.  doi: 10.1016/j.aml.2018.04.012.  Google Scholar

[11]

J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231-237.  doi: 10.1137/0915016.  Google Scholar

[12]

J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759-1777.  doi: 10.1137/S0036142992232949.  Google Scholar

[13]

J. M. Yang and X. Q. Xing, A two-grid discontinuous Galerkin method for a kind of nonlinear parabolic problems, Appl. Math. Comput., 346 (2019), 96-108.  doi: 10.1016/j.amc.2018.09.067.  Google Scholar

show all references

References:
[1]

J. R. Cannon and Y. P. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), 595-607.  doi: 10.1137/0727036.  Google Scholar

[2]

L. P. Chen and Y. P. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383-401.  doi: 10.1007/s10915-011-9469-3.  Google Scholar

[3]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems Ⅳ: Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729-1749.  doi: 10.1137/0732078.  Google Scholar

[4]

S. M. F. Garcia, Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: The discrete-time case, Numer. Methods Partial Differ. Equ., 10 (1994), 149-169.  doi: 10.1002/num.1690100203.  Google Scholar

[5]

T. L. HouW. Z. JiangY. T. Yang and H. T. Leng, Two-grid $P^2_0$-$P_1$ mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations, Appl. Numer. Math., 137 (2019), 136-150.  doi: 10.1016/j.apnum.2018.11.009.  Google Scholar

[6]

M.-N. Le Roux and V. Thomée, Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal., 26 (1989), 1291-1309.  doi: 10.1137/0726075.  Google Scholar

[7] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.   Google Scholar
[8]

W. LiuH. Rui and Y. P. Bao, Two kinds of two-grid algorithms for finite difference solutions of semilinear parabolic equations, J. Sys. Sci. Math. Sci., 30 (2010), 181-190.   Google Scholar

[9]

P. K. Moore, A posterior error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal., 31 (1994), 149-169.  doi: 10.1137/0731008.  Google Scholar

[10]

D. Y. Shi and P. C. Mu, Superconvergence analysis of a two-grid method for semilinear parabolic equations, Appl. Math. Lett., 84 (2018), 34-41.  doi: 10.1016/j.aml.2018.04.012.  Google Scholar

[11]

J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231-237.  doi: 10.1137/0915016.  Google Scholar

[12]

J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759-1777.  doi: 10.1137/S0036142992232949.  Google Scholar

[13]

J. M. Yang and X. Q. Xing, A two-grid discontinuous Galerkin method for a kind of nonlinear parabolic problems, Appl. Math. Comput., 346 (2019), 96-108.  doi: 10.1016/j.amc.2018.09.067.  Google Scholar

Table 1.  The error and the convergence order of $ \|u_h^n-I_h u^n\|_1 $ at $ t = 0.125 $ with $ h = \Delta t $
$ h $ $ \|u_h^n-I_h u^n\|_1 $ order
$ 1/32 $ 9.6461e-04 -
$ 1/64 $ 2.4062e-04 2.00
$ 1/128 $ 6.0130e-05 2.00
$ 1/256 $ 1.5037e-05 2.00
$ h $ $ \|u_h^n-I_h u^n\|_1 $ order
$ 1/32 $ 9.6461e-04 -
$ 1/64 $ 2.4062e-04 2.00
$ 1/128 $ 6.0130e-05 2.00
$ 1/256 $ 1.5037e-05 2.00
Table 2.  The error and the convergence order of $ \|u_H^n-I_H u^n\|_1 $ at $ t = 0.0625 $ with $ H = \Delta t $
$ H $ $ \|u_H^n-I_H u^n\|_1 $ order
$ 1/16 $ 1.9302e-02 -
$ 1/32 $ 4.8349e-03 2.00
$ 1/64 $ 1.2096e-03 2.00
$ 1/128 $ 3.0244e-04 2.00
$ H $ $ \|u_H^n-I_H u^n\|_1 $ order
$ 1/16 $ 1.9302e-02 -
$ 1/32 $ 4.8349e-03 2.00
$ 1/64 $ 1.2096e-03 2.00
$ 1/128 $ 3.0244e-04 2.00
Table 3.  The error and the convergence order of $ \|\widetilde{u}_h^n-I_h u^n\|_1 $ at $ t = 0.001 $ with $ \Delta t = 0.0001 $ and $ h = H^2 $
$ H $ $ \|\widetilde{u}_h^n-I_h u^n\|_1 $ order
$ 1/2 $ 8.7973e-04 -
$ 1/4 $ 7.1420e-05 3.51
$ 1/8 $ 4.6798e-06 3.91
$ 1/16 $ 2.9328e-07 3.99
$ H $ $ \|\widetilde{u}_h^n-I_h u^n\|_1 $ order
$ 1/2 $ 8.7973e-04 -
$ 1/4 $ 7.1420e-05 3.51
$ 1/8 $ 4.6798e-06 3.91
$ 1/16 $ 2.9328e-07 3.99
Table 4.  The cpu time of two-grid scheme and Crank-Nicolson scheme for each time step ($ h = \Delta t $)
$ (H,h) $ two-grid time (s) Crank-Nicolson time (s)
$ (1/4,1/16) $ 0.0998 0.1164
$ (1/8,1/64) $ 0.9118 1.2019
$ (1/16,1/256) $ 13.6126 17.9624
$ (H,h) $ two-grid time (s) Crank-Nicolson time (s)
$ (1/4,1/16) $ 0.0998 0.1164
$ (1/8,1/64) $ 0.9118 1.2019
$ (1/16,1/256) $ 13.6126 17.9624
[1]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[6]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[7]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[8]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[9]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[10]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[13]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[14]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[15]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[16]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[19]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[20]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

 Impact Factor: 0.263

Metrics

  • PDF downloads (40)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]