• Previous Article
    A $ C^0P_2 $ time-stepping virtual element method for linear wave equations on polygonal meshes
  • ERA Home
  • This Issue
  • Next Article
    Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data
June  2020, 28(2): 897-910. doi: 10.3934/era.2020047

Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations

School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin, China

* Corresponding author

Received  February 2020 Revised  April 2020 Published  June 2020

Fund Project: This work is supported by Technology Research Project of Jilin Provincial Department of Education(JJKH20190634KJ)

In this paper, a two-grid finite element scheme for semilinear parabolic integro-differential equations is proposed. In the two-grid scheme, continuous linear element is used for spatial discretization, while Crank-Nicolson scheme and Leap-Frog scheme are ultilized for temporal discretization. Based on the combination of the interpolation and Ritz projection technique, some superclose estimates between the interpolation and the numerical solution in the $ H^1 $-norm are derived. Notice that we only need to solve nonlinear problem once in the two-grid scheme, namely, the first time step on the coarse-grid space. A numerical example is presented to verify the effectiveness of the proposed two-grid scheme.

Citation: Changling Xu, Tianliang Hou. Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28 (2) : 897-910. doi: 10.3934/era.2020047
References:
[1]

J. R. Cannon and Y. P. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), 595-607.  doi: 10.1137/0727036.  Google Scholar

[2]

L. P. Chen and Y. P. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383-401.  doi: 10.1007/s10915-011-9469-3.  Google Scholar

[3]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems Ⅳ: Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729-1749.  doi: 10.1137/0732078.  Google Scholar

[4]

S. M. F. Garcia, Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: The discrete-time case, Numer. Methods Partial Differ. Equ., 10 (1994), 149-169.  doi: 10.1002/num.1690100203.  Google Scholar

[5]

T. L. HouW. Z. JiangY. T. Yang and H. T. Leng, Two-grid $P^2_0$-$P_1$ mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations, Appl. Numer. Math., 137 (2019), 136-150.  doi: 10.1016/j.apnum.2018.11.009.  Google Scholar

[6]

M.-N. Le Roux and V. Thomée, Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal., 26 (1989), 1291-1309.  doi: 10.1137/0726075.  Google Scholar

[7] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.   Google Scholar
[8]

W. LiuH. Rui and Y. P. Bao, Two kinds of two-grid algorithms for finite difference solutions of semilinear parabolic equations, J. Sys. Sci. Math. Sci., 30 (2010), 181-190.   Google Scholar

[9]

P. K. Moore, A posterior error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal., 31 (1994), 149-169.  doi: 10.1137/0731008.  Google Scholar

[10]

D. Y. Shi and P. C. Mu, Superconvergence analysis of a two-grid method for semilinear parabolic equations, Appl. Math. Lett., 84 (2018), 34-41.  doi: 10.1016/j.aml.2018.04.012.  Google Scholar

[11]

J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231-237.  doi: 10.1137/0915016.  Google Scholar

[12]

J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759-1777.  doi: 10.1137/S0036142992232949.  Google Scholar

[13]

J. M. Yang and X. Q. Xing, A two-grid discontinuous Galerkin method for a kind of nonlinear parabolic problems, Appl. Math. Comput., 346 (2019), 96-108.  doi: 10.1016/j.amc.2018.09.067.  Google Scholar

show all references

References:
[1]

J. R. Cannon and Y. P. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), 595-607.  doi: 10.1137/0727036.  Google Scholar

[2]

L. P. Chen and Y. P. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383-401.  doi: 10.1007/s10915-011-9469-3.  Google Scholar

[3]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems Ⅳ: Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729-1749.  doi: 10.1137/0732078.  Google Scholar

[4]

S. M. F. Garcia, Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: The discrete-time case, Numer. Methods Partial Differ. Equ., 10 (1994), 149-169.  doi: 10.1002/num.1690100203.  Google Scholar

[5]

T. L. HouW. Z. JiangY. T. Yang and H. T. Leng, Two-grid $P^2_0$-$P_1$ mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations, Appl. Numer. Math., 137 (2019), 136-150.  doi: 10.1016/j.apnum.2018.11.009.  Google Scholar

[6]

M.-N. Le Roux and V. Thomée, Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal., 26 (1989), 1291-1309.  doi: 10.1137/0726075.  Google Scholar

[7] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.   Google Scholar
[8]

W. LiuH. Rui and Y. P. Bao, Two kinds of two-grid algorithms for finite difference solutions of semilinear parabolic equations, J. Sys. Sci. Math. Sci., 30 (2010), 181-190.   Google Scholar

[9]

P. K. Moore, A posterior error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal., 31 (1994), 149-169.  doi: 10.1137/0731008.  Google Scholar

[10]

D. Y. Shi and P. C. Mu, Superconvergence analysis of a two-grid method for semilinear parabolic equations, Appl. Math. Lett., 84 (2018), 34-41.  doi: 10.1016/j.aml.2018.04.012.  Google Scholar

[11]

J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231-237.  doi: 10.1137/0915016.  Google Scholar

[12]

J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759-1777.  doi: 10.1137/S0036142992232949.  Google Scholar

[13]

J. M. Yang and X. Q. Xing, A two-grid discontinuous Galerkin method for a kind of nonlinear parabolic problems, Appl. Math. Comput., 346 (2019), 96-108.  doi: 10.1016/j.amc.2018.09.067.  Google Scholar

Table 1.  The error and the convergence order of $ \|u_h^n-I_h u^n\|_1 $ at $ t = 0.125 $ with $ h = \Delta t $
$ h $ $ \|u_h^n-I_h u^n\|_1 $ order
$ 1/32 $ 9.6461e-04 -
$ 1/64 $ 2.4062e-04 2.00
$ 1/128 $ 6.0130e-05 2.00
$ 1/256 $ 1.5037e-05 2.00
$ h $ $ \|u_h^n-I_h u^n\|_1 $ order
$ 1/32 $ 9.6461e-04 -
$ 1/64 $ 2.4062e-04 2.00
$ 1/128 $ 6.0130e-05 2.00
$ 1/256 $ 1.5037e-05 2.00
Table 2.  The error and the convergence order of $ \|u_H^n-I_H u^n\|_1 $ at $ t = 0.0625 $ with $ H = \Delta t $
$ H $ $ \|u_H^n-I_H u^n\|_1 $ order
$ 1/16 $ 1.9302e-02 -
$ 1/32 $ 4.8349e-03 2.00
$ 1/64 $ 1.2096e-03 2.00
$ 1/128 $ 3.0244e-04 2.00
$ H $ $ \|u_H^n-I_H u^n\|_1 $ order
$ 1/16 $ 1.9302e-02 -
$ 1/32 $ 4.8349e-03 2.00
$ 1/64 $ 1.2096e-03 2.00
$ 1/128 $ 3.0244e-04 2.00
Table 3.  The error and the convergence order of $ \|\widetilde{u}_h^n-I_h u^n\|_1 $ at $ t = 0.001 $ with $ \Delta t = 0.0001 $ and $ h = H^2 $
$ H $ $ \|\widetilde{u}_h^n-I_h u^n\|_1 $ order
$ 1/2 $ 8.7973e-04 -
$ 1/4 $ 7.1420e-05 3.51
$ 1/8 $ 4.6798e-06 3.91
$ 1/16 $ 2.9328e-07 3.99
$ H $ $ \|\widetilde{u}_h^n-I_h u^n\|_1 $ order
$ 1/2 $ 8.7973e-04 -
$ 1/4 $ 7.1420e-05 3.51
$ 1/8 $ 4.6798e-06 3.91
$ 1/16 $ 2.9328e-07 3.99
Table 4.  The cpu time of two-grid scheme and Crank-Nicolson scheme for each time step ($ h = \Delta t $)
$ (H,h) $ two-grid time (s) Crank-Nicolson time (s)
$ (1/4,1/16) $ 0.0998 0.1164
$ (1/8,1/64) $ 0.9118 1.2019
$ (1/16,1/256) $ 13.6126 17.9624
$ (H,h) $ two-grid time (s) Crank-Nicolson time (s)
$ (1/4,1/16) $ 0.0998 0.1164
$ (1/8,1/64) $ 0.9118 1.2019
$ (1/16,1/256) $ 13.6126 17.9624
[1]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[2]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[3]

Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109

[4]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[5]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[6]

Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 433-444. doi: 10.3934/naco.2019042

[7]

Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002

[8]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[9]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[10]

Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095

[11]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[12]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[13]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[14]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[15]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[16]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[17]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[18]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[19]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[20]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

2018 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]