# American Institute of Mathematical Sciences

June  2020, 28(2): 961-976. doi: 10.3934/era.2020051

## An adaptive edge finite element method for the Maxwell's equations in metamaterials

 1 Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China 2 Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China

Received  February 2020 Revised  April 2020 Published  June 2020

In this paper, we study an adaptive edge finite element method for time-harmonic Maxwell's equations in metamaterials. A-posteriori error estimators based on the recovery type and residual type are proposed, respectively. Based on our a-posteriori error estimators, the adaptive edge finite element method is designed and applied to simulate the backward wave propagation, electromagnetic splitter, rotator, concentrator and cloak devices. Numerical examples are presented to illustrate the reliability and efficiency of the proposed a-posteriori error estimations for the adaptive method.

Citation: Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051
##### References:
 [1] K. Ando, H. Kang and H. Liu, Plasmon resonance with finite frequencies: A validation of the quasi-static approximation for diametrically small inclusions, SIAM J. Appl. Math., 76 (2016), 731-749.  doi: 10.1137/15M1025943.  Google Scholar [2] G. Bao, H. Liu and J. Zou, Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers, J. Math. Pures. Appl. (9), 101 (2014), 716-733.  doi: 10.1016/j.matpur.2013.10.010.  Google Scholar [3] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar [4] E. Blåsten, H. Li, H. Liu and Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions, ESAIM Math. Model. Numer. Anal., 54 (2020), 957-976.  doi: 10.1051/m2an/2019091.  Google Scholar [5] J. H. Bramble and J. E. Pasciak, Analysis of a Cartesian PML approximation to the three dimensional electromagnetic wave scattering problem, Int. J. Numer. Anal. Model., 9 (2012), 543-561.   Google Scholar [6] S. C. Brenner, J. Gedicke and L.-Y. Sung, An adaptive $P_1$ finite element method for two-dimensional Maxwell's equations, J. Sci. Comput., 55 (2013), 738-754.  doi: 10.1007/s10915-012-9658-8.  Google Scholar [7] S. C. Brenner, J. Gedicke and L.-Y. Sung, An adaptive $P_1$ finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions, J. Sci. Comput., 68 (2016), 848-863.  doi: 10.1007/s10915-015-0161-x.  Google Scholar [8] Z. Cai and S. Cao, A recovery-based a posteriori error estimator for $H$(curl) interface problems, Comput. Methods. Appl. Mech. Engrg., 296 (2015), 169-195.  doi: 10.1016/j.cma.2015.08.002.  Google Scholar [9] Z. Cai and S. Zhang, Recovery-based error estimators for interface problems: Mixed and nonconforming finite elements, SIAM J. Numer. Anal., 48 (2010), 30-52.  doi: 10.1137/080722631.  Google Scholar [10] Z. Cai and S. Zhang, Flux recovery and a posteriori error estimators: Conforming elements for scalar elliptic equations, SIAM J. Numer. Anal., 48 (2010), 578-602.  doi: 10.1137/080742993.  Google Scholar [11] J. Cui, Multigrid methods for two-dimensional Maxwell's equations on graded meshes, J. Comput. Appl. Math., 255 (2014), 231-247.  doi: 10.1016/j.cam.2013.05.007.  Google Scholar [12] Y. Deng, H. Liu and G. Uhlmann, Full and partial cloaking in electromagnetic scattering, Arch. Ration. Mech. Anal., 223 (2017), 265-299.  doi: 10.1007/s00205-016-1035-6.  Google Scholar [13] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.  Google Scholar [14] Y. Hao and R. Mittra, FDTD modeling of metamaterials: Theory and applications, Artech. House., (2008). Google Scholar [15] B. He, W. Yang and H. Wang, Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations, J. Comput. Appl. Math., 376 (2020), 16pp. doi: 10.1016/j.cam.2020.112860.  Google Scholar [16] Y. Huang, J. Li and C. Wu, The averaging technique for superconvergence: Verification and application of 2D edge elements to Maxwell's equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 255 (2013), 121-132.  doi: 10.1016/j.cma.2012.11.008.  Google Scholar [17] Y. Huang, J. Li and W. Yang, Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230 (2011), 4559-4570.  doi: 10.1016/j.jcp.2011.02.031.  Google Scholar [18] Y. Huang, J. Li and W. Yang, Modeling backward wave propagation in metamaterials by the finite element time-domain method, SIAM J. Sci. Comput., 35 (2013), B248–B274. doi: 10.1137/120869869.  Google Scholar [19] Y. Huang and N. Yi, The superconvergent cluster recovery method, J. Sci. Comput., 44 (2010), 301-322.  doi: 10.1007/s10915-010-9379-9.  Google Scholar [20] H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance in $\mathbb{R}^{3}$, SIAM J. Appl. Math., 75 (2015), 1245-1260.  doi: 10.1137/15M1009974.  Google Scholar [21] H. Li, S. Li, H. Liu and X. Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications, ESAIM Math. Model. Numer. Anal., 53 (2019), 1351-1371.  doi: 10.1051/m2an/2019004.  Google Scholar [22] J. Li and J. S. Hesthaven, Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258 (2014), 915-930.  doi: 10.1016/j.jcp.2013.11.018.  Google Scholar [23] J. Li, Y. Huang and W. Yang, An adaptive edge finite element method for electromagnetic cloaking simulation, J. Comput. Phys., 249 (2013), 216-232.  doi: 10.1016/j.jcp.2013.04.026.  Google Scholar [24] H. Liu, Virtual reshaping and invisibility in obstacle scattering, Inverse Problems, 25 (2009), 16pp. doi: 10.1088/0266-5611/25/4/045006.  Google Scholar [25] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar [26] A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800.  doi: 10.1137/S0036142903413002.  Google Scholar [27] N. C. Nguyen, J. Peraire and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations, J. Comput. Phys., 230 (2011), 7151-7175.  doi: 10.1016/j.jcp.2011.05.018.  Google Scholar [28] J. B. Pendry, D. Schurig and D. R. Smith, Controlling electromagnetic fields, Science, 312 (2006), 1780-1782.  doi: 10.1126/science.1125907.  Google Scholar [29] N. A. Pierce and M. B. Giles, Adjoint recovery of superconvergent functionals from PDE approximations, SIAM. Rev., 42 (2000), 247-264.  doi: 10.1137/S0036144598349423.  Google Scholar [30] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Inc., Boston, MA, 2000.  Google Scholar [31] H. Wang, W. Yang and Y. Huang, Adaptive finite element method for the sound wave problems in two kinds of media, Comput. Math. Appl., 79 (2020), 789-801.  doi: 10.1016/j.camwa.2019.07.029.  Google Scholar [32] D. H. Werner and D.-H. Kwon, Transformation Electromagnetics and Metamaterials. Fundamental Principles and Applications, Springer-Verlag, London, 2014. doi: 10.1007/978-1-4471-4996-5.  Google Scholar [33] W. Yang, Y. Huang and J. Li, Developing a time-domain finite element method for the Lorentz metamaterial model and applications, J. Sci. Comput., 68 (2016), 438-463.  doi: 10.1007/s10915-015-0144-y.  Google Scholar [34] W. Yang, J. Li and Y. Huang, Modeling and analysis of the optical black hole in metamaterials by the finite element time-domain method, Comput. Methods Appl. Mech. Engrg., 304 (2016), 501-520.  doi: 10.1016/j.cma.2016.02.029.  Google Scholar [35] W. Yang, J. Li and Y. Huang, Mathematical analysis and finite element time domain simulation of arbitrary star-shaped electromagnetic cloaks, SIAM J. Numer. Anal., 56 (2018), 136-159.  doi: 10.1137/16M1093835.  Google Scholar [36] W. Yang, J. Li, Y. Huang and B. He, Developing finite element methods for simulating transformation optics devices with metamaterials, Commun. Comput. Phys., 25 (2019), 135-154.  doi: 10.4208/cicp.oa-2017-0225.  Google Scholar [37] O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery (SPR) and adaptive finite element refinement, Comput. Methods. Appl. Mech. Engrg., 101 (1992), 207-224.  doi: 10.1016/0045-7825(92)90023-D.  Google Scholar

show all references

##### References:
 [1] K. Ando, H. Kang and H. Liu, Plasmon resonance with finite frequencies: A validation of the quasi-static approximation for diametrically small inclusions, SIAM J. Appl. Math., 76 (2016), 731-749.  doi: 10.1137/15M1025943.  Google Scholar [2] G. Bao, H. Liu and J. Zou, Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers, J. Math. Pures. Appl. (9), 101 (2014), 716-733.  doi: 10.1016/j.matpur.2013.10.010.  Google Scholar [3] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar [4] E. Blåsten, H. Li, H. Liu and Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions, ESAIM Math. Model. Numer. Anal., 54 (2020), 957-976.  doi: 10.1051/m2an/2019091.  Google Scholar [5] J. H. Bramble and J. E. Pasciak, Analysis of a Cartesian PML approximation to the three dimensional electromagnetic wave scattering problem, Int. J. Numer. Anal. Model., 9 (2012), 543-561.   Google Scholar [6] S. C. Brenner, J. Gedicke and L.-Y. Sung, An adaptive $P_1$ finite element method for two-dimensional Maxwell's equations, J. Sci. Comput., 55 (2013), 738-754.  doi: 10.1007/s10915-012-9658-8.  Google Scholar [7] S. C. Brenner, J. Gedicke and L.-Y. Sung, An adaptive $P_1$ finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions, J. Sci. Comput., 68 (2016), 848-863.  doi: 10.1007/s10915-015-0161-x.  Google Scholar [8] Z. Cai and S. Cao, A recovery-based a posteriori error estimator for $H$(curl) interface problems, Comput. Methods. Appl. Mech. Engrg., 296 (2015), 169-195.  doi: 10.1016/j.cma.2015.08.002.  Google Scholar [9] Z. Cai and S. Zhang, Recovery-based error estimators for interface problems: Mixed and nonconforming finite elements, SIAM J. Numer. Anal., 48 (2010), 30-52.  doi: 10.1137/080722631.  Google Scholar [10] Z. Cai and S. Zhang, Flux recovery and a posteriori error estimators: Conforming elements for scalar elliptic equations, SIAM J. Numer. Anal., 48 (2010), 578-602.  doi: 10.1137/080742993.  Google Scholar [11] J. Cui, Multigrid methods for two-dimensional Maxwell's equations on graded meshes, J. Comput. Appl. Math., 255 (2014), 231-247.  doi: 10.1016/j.cam.2013.05.007.  Google Scholar [12] Y. Deng, H. Liu and G. Uhlmann, Full and partial cloaking in electromagnetic scattering, Arch. Ration. Mech. Anal., 223 (2017), 265-299.  doi: 10.1007/s00205-016-1035-6.  Google Scholar [13] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.  Google Scholar [14] Y. Hao and R. Mittra, FDTD modeling of metamaterials: Theory and applications, Artech. House., (2008). Google Scholar [15] B. He, W. Yang and H. Wang, Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations, J. Comput. Appl. Math., 376 (2020), 16pp. doi: 10.1016/j.cam.2020.112860.  Google Scholar [16] Y. Huang, J. Li and C. Wu, The averaging technique for superconvergence: Verification and application of 2D edge elements to Maxwell's equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 255 (2013), 121-132.  doi: 10.1016/j.cma.2012.11.008.  Google Scholar [17] Y. Huang, J. Li and W. Yang, Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230 (2011), 4559-4570.  doi: 10.1016/j.jcp.2011.02.031.  Google Scholar [18] Y. Huang, J. Li and W. Yang, Modeling backward wave propagation in metamaterials by the finite element time-domain method, SIAM J. Sci. Comput., 35 (2013), B248–B274. doi: 10.1137/120869869.  Google Scholar [19] Y. Huang and N. Yi, The superconvergent cluster recovery method, J. Sci. Comput., 44 (2010), 301-322.  doi: 10.1007/s10915-010-9379-9.  Google Scholar [20] H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance in $\mathbb{R}^{3}$, SIAM J. Appl. Math., 75 (2015), 1245-1260.  doi: 10.1137/15M1009974.  Google Scholar [21] H. Li, S. Li, H. Liu and X. Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications, ESAIM Math. Model. Numer. Anal., 53 (2019), 1351-1371.  doi: 10.1051/m2an/2019004.  Google Scholar [22] J. Li and J. S. Hesthaven, Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258 (2014), 915-930.  doi: 10.1016/j.jcp.2013.11.018.  Google Scholar [23] J. Li, Y. Huang and W. Yang, An adaptive edge finite element method for electromagnetic cloaking simulation, J. Comput. Phys., 249 (2013), 216-232.  doi: 10.1016/j.jcp.2013.04.026.  Google Scholar [24] H. Liu, Virtual reshaping and invisibility in obstacle scattering, Inverse Problems, 25 (2009), 16pp. doi: 10.1088/0266-5611/25/4/045006.  Google Scholar [25] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar [26] A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800.  doi: 10.1137/S0036142903413002.  Google Scholar [27] N. C. Nguyen, J. Peraire and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations, J. Comput. Phys., 230 (2011), 7151-7175.  doi: 10.1016/j.jcp.2011.05.018.  Google Scholar [28] J. B. Pendry, D. Schurig and D. R. Smith, Controlling electromagnetic fields, Science, 312 (2006), 1780-1782.  doi: 10.1126/science.1125907.  Google Scholar [29] N. A. Pierce and M. B. Giles, Adjoint recovery of superconvergent functionals from PDE approximations, SIAM. Rev., 42 (2000), 247-264.  doi: 10.1137/S0036144598349423.  Google Scholar [30] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Inc., Boston, MA, 2000.  Google Scholar [31] H. Wang, W. Yang and Y. Huang, Adaptive finite element method for the sound wave problems in two kinds of media, Comput. Math. Appl., 79 (2020), 789-801.  doi: 10.1016/j.camwa.2019.07.029.  Google Scholar [32] D. H. Werner and D.-H. Kwon, Transformation Electromagnetics and Metamaterials. Fundamental Principles and Applications, Springer-Verlag, London, 2014. doi: 10.1007/978-1-4471-4996-5.  Google Scholar [33] W. Yang, Y. Huang and J. Li, Developing a time-domain finite element method for the Lorentz metamaterial model and applications, J. Sci. Comput., 68 (2016), 438-463.  doi: 10.1007/s10915-015-0144-y.  Google Scholar [34] W. Yang, J. Li and Y. Huang, Modeling and analysis of the optical black hole in metamaterials by the finite element time-domain method, Comput. Methods Appl. Mech. Engrg., 304 (2016), 501-520.  doi: 10.1016/j.cma.2016.02.029.  Google Scholar [35] W. Yang, J. Li and Y. Huang, Mathematical analysis and finite element time domain simulation of arbitrary star-shaped electromagnetic cloaks, SIAM J. Numer. Anal., 56 (2018), 136-159.  doi: 10.1137/16M1093835.  Google Scholar [36] W. Yang, J. Li, Y. Huang and B. He, Developing finite element methods for simulating transformation optics devices with metamaterials, Commun. Comput. Phys., 25 (2019), 135-154.  doi: 10.4208/cicp.oa-2017-0225.  Google Scholar [37] O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery (SPR) and adaptive finite element refinement, Comput. Methods. Appl. Mech. Engrg., 101 (1992), 207-224.  doi: 10.1016/0045-7825(92)90023-D.  Google Scholar
Example 4.2: The first line and the second line are the real values of $E_1$ and the meshes, respectively. From left to right: $8510$ Ndof (for the initial mesh), $133620$ Ndof (by using $\eta^{r0}_{K_l}$) after $14$ refinements, $139743$ Ndof (by using $\eta^{r1}_{K_l}$) and $132334$ Ndof (by using $\eta^{r2}_{K_l}$) with the same times of 12 refinements
Example 4.2: Snapshots of numerical solution and adaptive meshes for the real values of $E_1$ after $10$ refinements. First two columns: $142833$ Ndof (by using $\eta^{r1}_{K_l}$); The last two columns: $138064$ Ndof (by using $\eta^{r2}_{K_l}$)
Example 4.3: The first is the initial mesh with $6090$ Ndof and the last three are the real values of $E_1$ based on the initial mesh
Example 4.3: The first line and the second line are the real values of $E_1$ and the meshes with $(x_0, y_0) = (1, 1.45)$ and $m_p = 2$, respectively. From left to right: $299395$ Ndof (using $\eta^{r0}_{K_l}$) after $18$ refinements, $315182$ Ndof (by using $\eta^{r1}_{K_l}$) and $273473$ Ndof (by using $\eta^{r2}_{K_l}$) with the same times of $13$ refinements
Example 4.3: Snapshots of numerical solution and adaptive meshes for the real values of $E_1$ after $13$ refinements with $(x_0, y_0) = (1, 1.45)$ and $m_p = 2$. First two columns: $303142$ Ndof (by using $\eta^{r1}_{K_l}$); The last two columns: $278572$ Ndof (by using $\eta^{r2}_{K_l}$)
Example 4.3: The first line and the second line are the real values of $E_1$ and the meshes with $(x_0, y_0) = (-1, 1.45)$ and $m_p = -2$, respectively. From left to right: $265615$ Ndof (by using $\eta^{r0}_{K_l}$) after $21$ refinements, $282153$ Ndof (by using $\eta^{r1}_{K_l}$) and $237085$ Ndof (by using $\eta^{r2}_{K_l}$) with the same times of $14$ refinements
Example 4.3: Snapshots of numerical solution and adaptive meshes for the real values of $E_1$ after $14$ refinements with $(x_0, y_0) = (-1, 1.45)$ and $m_p = -2$. First two columns: $282422$ Ndof (by using $\eta^{r1}_{K_l}$); The last two columns: $245356$ Ndof (by using $\eta^{r2}_{K_l}$)
Example 4.3: The first line and the second line are the real values of $E_1$ and the meshes, respectively. From left to right: $323340$ Ndof (by using $\eta^{r0}_{K_l}$) after $21$ refinements, $306934$ Ndof (by using $\eta^{r1}_{K_l}$) and $280265$ Ndof (by using $\eta^{r2}_{K_l}$) with the same times of $13$ refinements
Example 4.3: Snapshots of numerical solution and adaptive meshes for the real values of $E_1$ after $13$ refinements. First two columns: $284570$ Ndof (by using $\eta^{r1}_{K_l}$); The last two columns: $271643$ Ndof (by using $\eta^{r2}_{K_l}$)
Example 4.4: The first line, the second line and the third line are the real values of $E_1$, the real values of $E_2$ and the meshes, respectively. From left to right: $344405$ Ndof (by using $\eta^{r0}_{K_l}$) after $3$ refinements, $344620$ Ndof (by using $\eta^{r1}_{K_l}$) and $332141$ Ndof (by using $\eta^{r2}_{K_l}$) with the same times of $17$ refinements
Example 4.4: The first column, the second column and the third column are snapshots of numerical solution for the real values of $E_1$, $E_2$ and adaptive meshes, respectively. The first line: $393423$ Ndof after $23$ refinements (by using $\eta^{r1}_{K_l}$); The second line: $416438$ Ndof after $21$ refinements (by using $\eta^{r2}_{K_l}$)
Example 4.5: The first line and the second line are the real values of $E_2$ and the meshes, respectively. From left to right: $794533$ Ndof (by using $\eta^{r0}_{K_l}$) after $4$ refinements, $506294$ Ndof (by using $\eta^{r1}_{K_l}$) after $23$ refinements and $505234$ Ndof (by using $\eta^{r2}_{K_l}$) after $17$ refinements
Example 4.5: Snapshots of numerical solution and adaptive meshes for the real values of $E_2$. First two columns: $468957$ Ndof (by using $\eta^{r1}_{K_l}$) after $28$ refinements; The last two columns: $656397$ Ndof (by using $\eta^{r2}_{K_l}$) after $25$ refinements
Example 4.6: The computational domain for the cloak simulation
Example 4.6: The first line and the second line are the real values of $E_2$ and the meshes, respectively. From left to right: $445224$ Ndof (by using $\eta^{r0}_{K_l}$) after $126$ refinements, $323420$ Ndof (by using $\eta^{r1}_{K_l}$) after $10$ refinements, $120272$ Ndof (by using $\eta^{r2}_{K_l}$) after $30$ refinements
Example 4.6: Snapshots of numerical solution and adaptive meshes for the real values of $E_2$. First two columns: $291690$ Ndof (by using $\eta^{r1}_{K_l}$) after $10$ refinements; The last two columns: $78497$ Ndof (by using $\eta^{r2}_{K_l}$) after $34$ refinements
The Discrete $l_2$ errors and convergence rate
 $h$ $||R(\mu^{-1}\nabla\times \boldsymbol{E}) - \mu^{-1}\nabla\times \boldsymbol{E}||_{l_2}$ Rate $||R(\varepsilon \boldsymbol{E})-\varepsilon \boldsymbol{E}||_{l_2}$ Rate 1/2 1.72241533259 $\ast$ 0.65798419344 $\ast$ 1/4 1.43147288047 0.2669 0.33590028941 0.9700 1/8 1.04238857427 0.4576 0.09973181632 1.7519 1/16 0.33780141151 1.6256 0.02622591011 1.9271 1/32 0.08957072297 1.9151 0.00685496133 1.9358 1/64 0.02277727214 1.9754 0.00173714021 1.9804
 $h$ $||R(\mu^{-1}\nabla\times \boldsymbol{E}) - \mu^{-1}\nabla\times \boldsymbol{E}||_{l_2}$ Rate $||R(\varepsilon \boldsymbol{E})-\varepsilon \boldsymbol{E}||_{l_2}$ Rate 1/2 1.72241533259 $\ast$ 0.65798419344 $\ast$ 1/4 1.43147288047 0.2669 0.33590028941 0.9700 1/8 1.04238857427 0.4576 0.09973181632 1.7519 1/16 0.33780141151 1.6256 0.02622591011 1.9271 1/32 0.08957072297 1.9151 0.00685496133 1.9358 1/64 0.02277727214 1.9754 0.00173714021 1.9804
 [1] Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012 [2] Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2557-2570. doi: 10.3934/dcdss.2020400 [3] Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465 [4] Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056 [5] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [6] Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 [7] Michael Hintermüller, Monserrat Rincon-Camacho. An adaptive finite element method in $L^2$-TV-based image denoising. Inverse Problems & Imaging, 2014, 8 (3) : 685-711. doi: 10.3934/ipi.2014.8.685 [8] Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947 [9] Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 [10] B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405 [11] Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91 [12] Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 [13] Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 [14] Yacheng Liu, Runzhang Xu. Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 171-189. doi: 10.3934/dcdsb.2007.7.171 [15] Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 [16] Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489 [17] Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29 (3) : 2517-2532. doi: 10.3934/era.2020127 [18] Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021163 [19] Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583 [20] Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2020 Impact Factor: 1.833