June  2020, 28(2): 1031-1036. doi: 10.3934/era.2020055

A family of $ q $-congruences modulo the square of a cyclotomic polynomial

School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, China

Received  January 2020 Revised  April 2020 Published  June 2020

Fund Project: The author was partially supported by the National Natural Science Foundation of China (grant 11771175)

Using Watson's terminating $ _8\phi_7 $ transformation formula, we prove a family of $ q $-congruences modulo the square of a cyclotomic polynomial, which were originally conjectured by the author and Zudilin [J. Math. Anal. Appl. 475 (2019), 1636-646]. As an application, we deduce two supercongruences modulo $ p^4 $ ($ p $ is an odd prime) and their $ q $-analogues. This also partially confirms a special case of Swisher's (H.3) conjecture.

Citation: Victor J. W. Guo. A family of $ q $-congruences modulo the square of a cyclotomic polynomial. Electronic Research Archive, 2020, 28 (2) : 1031-1036. doi: 10.3934/era.2020055
References:
[1]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251.  Google Scholar

[2]

C.-Y. Gu and V. J. W. Guo, $q$-Analogues of two supercongruences of Z.-W. Sun, Czechoslovak Math. J., in press. doi: 10.21136/CMJ.2020.0516-18.  Google Scholar

[3]

V. J. W. Guo, Common $q$-analogues of some different supercongruences, Results Math., 74 (2019), 15pp. doi: 10.1007/s00025-019-1056-1.  Google Scholar

[4]

V. J. W. Guo, Proof of a generalization of the (B.2) supercongruence of Van Hamme through a $q$-microscope, Adv. in Appl. Math., 116 (2020), 19pp. doi: 10.1016/j.aam.2020.102016.  Google Scholar

[5]

V. J. W. Guo, $q$-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl., 487 (2020), 9pp. doi: 10.1016/j.jmaa.2020.124022.  Google Scholar

[6]

V. J. W. Guo and J.-C. Liu, $q$-Analogues of two Ramanujan-type formulas for $1/\pi$, J. Difference Equ. Appl., 24 (2018), 1368-1373.  doi: 10.1080/10236198.2018.1485669.  Google Scholar

[7]

V. J. W. Guo and M. J. Schlosser, Some new $q$-congruences for truncated basic hypergeometric series: Even powers, Results Math., 75 (2020), 15pp. doi: 10.1007/s00025-019-1126-4.  Google Scholar

[8]

V. J. W. Guo and J. Zeng, Some $q$-supercongruences for truncated basic hypergeometric series, Acta Arith., 171 (2015), 309-326.  doi: 10.4064/aa171-4-2.  Google Scholar

[9]

V. J. W. Guo and W. Zudilin, A $q$-microscope for supercongruences, Adv. Math., 346 (2019), 329-358.  doi: 10.1016/j.aim.2019.02.008.  Google Scholar

[10]

V. J. W. Guo and W. Zudilin, On a $q$-deformation of modular forms, J. Math. Anal. Appl., 475 (2019), 1636-1646.  doi: 10.1016/j.jmaa.2019.03.035.  Google Scholar

[11]

V. J. W. Guo and W. Zudilin, A common $q$-analogue of two supercongruences, Results Math., 75 (2020), 11pp. doi: 10.1007/s00025-020-1168-7.  Google Scholar

[12]

J.-C. Liu, Some supercongruences on truncated $_3F_2$ hypergeometric series, J. Difference Equ. Appl., 24 (2018), 438-451.  doi: 10.1080/10236198.2017.1418863.  Google Scholar

[13]

J.-C. Liu, On Van Hamme's (A.2) and (H.2) supercongruences, J. Math. Anal. Appl., 471 (2019), 613-622.  doi: 10.1016/j.jmaa.2018.10.095.  Google Scholar

[14]

L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773-808.  doi: 10.1016/j.aim.2015.11.043.  Google Scholar

[15]

H.-X. Ni and H. Pan, Some symmetric $q$-congruences modulo the square of a cyclotomic polynomial, J. Math. Anal. Appl., 481 (2020), 12pp. doi: 10.1016/j.jmaa.2019.07.062.  Google Scholar

[16]

Z.-H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143 (2014), 293-319.  doi: 10.1016/j.jnt.2014.04.012.  Google Scholar

[17]

Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory, 132 (2012), 2673-2699.  doi: 10.1016/j.jnt.2012.05.014.  Google Scholar

[18]

H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci., 2 (2015), 21pp. doi: 10.1186/s40687-015-0037-6.  Google Scholar

[19]

L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in $p$-Adic Functional Analysis, Lecture Notes in Pure and Appl. Math., 192, Dekker, New York, 1997,223–236.  Google Scholar

[20]

C. Wang and H. Pan, On a conjectural congruence of Guo, preprint, arXiv: 2001.08347. Google Scholar

show all references

References:
[1]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251.  Google Scholar

[2]

C.-Y. Gu and V. J. W. Guo, $q$-Analogues of two supercongruences of Z.-W. Sun, Czechoslovak Math. J., in press. doi: 10.21136/CMJ.2020.0516-18.  Google Scholar

[3]

V. J. W. Guo, Common $q$-analogues of some different supercongruences, Results Math., 74 (2019), 15pp. doi: 10.1007/s00025-019-1056-1.  Google Scholar

[4]

V. J. W. Guo, Proof of a generalization of the (B.2) supercongruence of Van Hamme through a $q$-microscope, Adv. in Appl. Math., 116 (2020), 19pp. doi: 10.1016/j.aam.2020.102016.  Google Scholar

[5]

V. J. W. Guo, $q$-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl., 487 (2020), 9pp. doi: 10.1016/j.jmaa.2020.124022.  Google Scholar

[6]

V. J. W. Guo and J.-C. Liu, $q$-Analogues of two Ramanujan-type formulas for $1/\pi$, J. Difference Equ. Appl., 24 (2018), 1368-1373.  doi: 10.1080/10236198.2018.1485669.  Google Scholar

[7]

V. J. W. Guo and M. J. Schlosser, Some new $q$-congruences for truncated basic hypergeometric series: Even powers, Results Math., 75 (2020), 15pp. doi: 10.1007/s00025-019-1126-4.  Google Scholar

[8]

V. J. W. Guo and J. Zeng, Some $q$-supercongruences for truncated basic hypergeometric series, Acta Arith., 171 (2015), 309-326.  doi: 10.4064/aa171-4-2.  Google Scholar

[9]

V. J. W. Guo and W. Zudilin, A $q$-microscope for supercongruences, Adv. Math., 346 (2019), 329-358.  doi: 10.1016/j.aim.2019.02.008.  Google Scholar

[10]

V. J. W. Guo and W. Zudilin, On a $q$-deformation of modular forms, J. Math. Anal. Appl., 475 (2019), 1636-1646.  doi: 10.1016/j.jmaa.2019.03.035.  Google Scholar

[11]

V. J. W. Guo and W. Zudilin, A common $q$-analogue of two supercongruences, Results Math., 75 (2020), 11pp. doi: 10.1007/s00025-020-1168-7.  Google Scholar

[12]

J.-C. Liu, Some supercongruences on truncated $_3F_2$ hypergeometric series, J. Difference Equ. Appl., 24 (2018), 438-451.  doi: 10.1080/10236198.2017.1418863.  Google Scholar

[13]

J.-C. Liu, On Van Hamme's (A.2) and (H.2) supercongruences, J. Math. Anal. Appl., 471 (2019), 613-622.  doi: 10.1016/j.jmaa.2018.10.095.  Google Scholar

[14]

L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773-808.  doi: 10.1016/j.aim.2015.11.043.  Google Scholar

[15]

H.-X. Ni and H. Pan, Some symmetric $q$-congruences modulo the square of a cyclotomic polynomial, J. Math. Anal. Appl., 481 (2020), 12pp. doi: 10.1016/j.jmaa.2019.07.062.  Google Scholar

[16]

Z.-H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143 (2014), 293-319.  doi: 10.1016/j.jnt.2014.04.012.  Google Scholar

[17]

Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory, 132 (2012), 2673-2699.  doi: 10.1016/j.jnt.2012.05.014.  Google Scholar

[18]

H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci., 2 (2015), 21pp. doi: 10.1186/s40687-015-0037-6.  Google Scholar

[19]

L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in $p$-Adic Functional Analysis, Lecture Notes in Pure and Appl. Math., 192, Dekker, New York, 1997,223–236.  Google Scholar

[20]

C. Wang and H. Pan, On a conjectural congruence of Guo, preprint, arXiv: 2001.08347. Google Scholar

[1]

Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457

[2]

Ji-Cai Liu. Proof of Sun's conjectural supercongruence involving Catalan numbers. Electronic Research Archive, 2020, 28 (2) : 1023-1030. doi: 10.3934/era.2020054

[3]

Azniv Kasparian, Ivan Marinov. Duursma's reduced polynomial. Advances in Mathematics of Communications, 2017, 11 (4) : 647-669. doi: 10.3934/amc.2017048

[4]

Yakov Varshavsky. A proof of a generalization of Deligne's conjecture. Electronic Research Announcements, 2005, 11: 78-88.

[5]

Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic & Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277

[6]

Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007

[7]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[8]

Jan Hladký, Diana Piguet, Miklós Simonovits, Maya Stein, Endre Szemerédi. The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs. Electronic Research Announcements, 2015, 22: 1-11. doi: 10.3934/era.2015.22.1

[9]

John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7.

[10]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[11]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[12]

Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020359

[13]

Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123

[14]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[15]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[16]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[17]

Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $ N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007

[18]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[19]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[20]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

 Impact Factor: 0.263

Metrics

  • PDF downloads (86)
  • HTML views (107)
  • Cited by (0)

Other articles
by authors

[Back to Top]