June  2020, 28(2): 1063-1075. doi: 10.3934/era.2020058

Two congruences concerning Apéry numbers conjectured by Z.-W. Sun

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received  February 2020 Revised  May 2020 Published  June 2020

Fund Project: The work is supported by the National Natural Science Foundation of China (grant no. 11971222)

Let
$ n $
be a nonnegative integer. The
$ n $
-th Apéry number is defined by
$ A_n: = \sum\limits_{k = 0}^n\binom{n+k}{k}^2\binom{n}{k}^2. $
Z.-W. Sun investigated the congruence properties of Apéry numbers and posed some conjectures. For example, Sun conjectured that for any prime
$ p\geq7 $
$ \sum\limits_{k = 0}^{p-1}(2k+1)A_k\equiv p-\frac{7}{2}p^2H_{p-1}\pmod{p^6} $
and for any prime
$ p\geq5 $
$ \sum\limits_{k = 0}^{p-1}(2k+1)^3A_k\equiv p^3+4p^4H_{p-1}+\frac{6}{5}p^8B_{p-5}\pmod{p^9}, $
where
$ H_n = \sum_{k = 1}^n1/k $
denotes the
$ n $
-th harmonic number and
$ B_0, B_1, \ldots $
are the well-known Bernoulli numbers. In this paper we shall confirm these two conjectures.
Citation: Chen Wang. Two congruences concerning Apéry numbers conjectured by Z.-W. Sun. Electronic Research Archive, 2020, 28 (2) : 1063-1075. doi: 10.3934/era.2020058
References:
[1]

S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math., 518 (2000), 187-212.  doi: 10.1515/crll.2000.004.  Google Scholar

[2]

R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque, 61 (1979), 11-13.   Google Scholar

[3]

F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201-210.  doi: 10.1016/0022-314X(87)90025-4.  Google Scholar

[4]

H.-Q. CaoY. Matiyasevich and Z.-W. Sun, Congruences for Apéry numbers $\beta_n = \sum_{k = 0}^n\binom{n}{k}^2\binom{n+k}{k}$, Int. J. Number Theory, 16 (2020), 981-1003.  doi: 10.1142/S1793042120500505.  Google Scholar

[5]

J. W. L. Glaisher, On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$, Quart. J. Math., 31 (1900), 321-353.   Google Scholar

[6]

V. J. W. Guo and J. Zeng, Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials, J. Number Theory, 132 (2012), 1731-1740.  doi: 10.1016/j.jnt.2012.02.004.  Google Scholar

[7]

V. J. W. Guo and J. Zeng, New congruences for sums involving Apéry numbers or central Delannoy numbers, Int. J. Number Theory, 8 (2012), 2003-2016.  doi: 10.1142/S1793042112501138.  Google Scholar

[8]

Kh. Hessami Pilehrood and T. Hessami Pilehrood, Congruences arising from Apéry-type series for zeta values, Adv. Appl. Math., 49 (2012), 218-238.   Google Scholar

[9]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2$^{nd}$ edition, Graduate Texts in Math., Vol. 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4.  Google Scholar

[10]

J.-C. Liu and C. Wang, Congruences for the $(p-1)$th Apéry number, Bull. Aust. Math. Soc., 99 (2019), 362-368.  doi: 10.1017/S0004972718001156.  Google Scholar

[11]

K. Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and $q$-Series, Amer. Math. Soc., Providence, RI, 2004.  Google Scholar

[12]

N. J. A. Sloane, Sequence A005259 in OEIS, http://oeis.org/A005259. Google Scholar

[13]

Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math., 105 (2000), 193-223.  doi: 10.1016/S0166-218X(00)00184-0.  Google Scholar

[14]

Z.-W. Sun, Open conjectures on congruences, preprint, arXiv: 0911.5665v57. Google Scholar

[15]

Z.-W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140 (2012), 415-428.  doi: 10.1090/S0002-9939-2011-10925-0.  Google Scholar

[16]

Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory, 132 (2012), 2673-2699.  doi: 10.1016/j.jnt.2012.05.014.  Google Scholar

[17]

Z.-W. Sun and L.-L. Zhao, Arithmetic theory of harmonic numbers(II), Colloq. Math., 130 (2013), 67-78.  doi: 10.4064/cm130-1-7.  Google Scholar

[18]

R. Tauraso and J. Zhao, Congruences of alternating multiple harmonic sums, J. Comb. Number Theory, 2 (2010), 129-159.   Google Scholar

[19]

J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4 (2008), 73-106.  doi: 10.1142/S1793042108001146.  Google Scholar

show all references

References:
[1]

S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math., 518 (2000), 187-212.  doi: 10.1515/crll.2000.004.  Google Scholar

[2]

R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque, 61 (1979), 11-13.   Google Scholar

[3]

F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201-210.  doi: 10.1016/0022-314X(87)90025-4.  Google Scholar

[4]

H.-Q. CaoY. Matiyasevich and Z.-W. Sun, Congruences for Apéry numbers $\beta_n = \sum_{k = 0}^n\binom{n}{k}^2\binom{n+k}{k}$, Int. J. Number Theory, 16 (2020), 981-1003.  doi: 10.1142/S1793042120500505.  Google Scholar

[5]

J. W. L. Glaisher, On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$, Quart. J. Math., 31 (1900), 321-353.   Google Scholar

[6]

V. J. W. Guo and J. Zeng, Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials, J. Number Theory, 132 (2012), 1731-1740.  doi: 10.1016/j.jnt.2012.02.004.  Google Scholar

[7]

V. J. W. Guo and J. Zeng, New congruences for sums involving Apéry numbers or central Delannoy numbers, Int. J. Number Theory, 8 (2012), 2003-2016.  doi: 10.1142/S1793042112501138.  Google Scholar

[8]

Kh. Hessami Pilehrood and T. Hessami Pilehrood, Congruences arising from Apéry-type series for zeta values, Adv. Appl. Math., 49 (2012), 218-238.   Google Scholar

[9]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2$^{nd}$ edition, Graduate Texts in Math., Vol. 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4.  Google Scholar

[10]

J.-C. Liu and C. Wang, Congruences for the $(p-1)$th Apéry number, Bull. Aust. Math. Soc., 99 (2019), 362-368.  doi: 10.1017/S0004972718001156.  Google Scholar

[11]

K. Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and $q$-Series, Amer. Math. Soc., Providence, RI, 2004.  Google Scholar

[12]

N. J. A. Sloane, Sequence A005259 in OEIS, http://oeis.org/A005259. Google Scholar

[13]

Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math., 105 (2000), 193-223.  doi: 10.1016/S0166-218X(00)00184-0.  Google Scholar

[14]

Z.-W. Sun, Open conjectures on congruences, preprint, arXiv: 0911.5665v57. Google Scholar

[15]

Z.-W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140 (2012), 415-428.  doi: 10.1090/S0002-9939-2011-10925-0.  Google Scholar

[16]

Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory, 132 (2012), 2673-2699.  doi: 10.1016/j.jnt.2012.05.014.  Google Scholar

[17]

Z.-W. Sun and L.-L. Zhao, Arithmetic theory of harmonic numbers(II), Colloq. Math., 130 (2013), 67-78.  doi: 10.4064/cm130-1-7.  Google Scholar

[18]

R. Tauraso and J. Zhao, Congruences of alternating multiple harmonic sums, J. Comb. Number Theory, 2 (2010), 129-159.   Google Scholar

[19]

J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4 (2008), 73-106.  doi: 10.1142/S1793042108001146.  Google Scholar

[1]

Dmitry Krachun, Zhi-Wei Sun. On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28 (1) : 559-566. doi: 10.3934/era.2020029

[2]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[3]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[4]

Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

[5]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[6]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[7]

Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663

[8]

Dubi Kelmer. Quadratic irrationals and linking numbers of modular knots. Journal of Modern Dynamics, 2012, 6 (4) : 539-561. doi: 10.3934/jmd.2012.6.539

[9]

Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517

[10]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[11]

Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027

[12]

Zengjing Chen, Weihuan Huang, Panyu Wu. Extension of the strong law of large numbers for capacities. Mathematical Control & Related Fields, 2019, 9 (1) : 175-190. doi: 10.3934/mcrf.2019010

[13]

Matthias Büger. Torsion numbers, a tool for the examination of symmetric reaction-diffusion systems related to oscillation numbers. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 691-708. doi: 10.3934/dcds.1998.4.691

[14]

Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399

[15]

Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75

[16]

Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751

[17]

Armando G. M. Neves. Upper and lower bounds on Mathieu characteristic numbers of integer orders. Communications on Pure & Applied Analysis, 2004, 3 (3) : 447-464. doi: 10.3934/cpaa.2004.3.447

[18]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[19]

Ji-Cai Liu. Proof of Sun's conjectural supercongruence involving Catalan numbers. Electronic Research Archive, 2020, 28 (2) : 1023-1030. doi: 10.3934/era.2020054

[20]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

2018 Impact Factor: 0.263

Article outline

[Back to Top]