• Previous Article
    Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model
  • ERA Home
  • This Issue
  • Next Article
    The longtime behavior of the model with nonlocal diffusion and free boundaries in online social networks
September  2020, 28(3): 1161-1189. doi: 10.3934/era.2020064

The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions

1. 

Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan, MO 411105, China

2. 

Xiangtan University, Xiangtan, MO 411105, China

3. 

Ammosov North-Eastern Federal University, Yakutsk, MO 677000, Russia

* Corresponding author: Yin Yang

Received  March 2020 Revised  May 2020 Published  July 2020

Fund Project: Yin Yang was supported by National Natural Science Foundation of China Project (11671342, 11931003) and Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (2020JJ2027); Sujuan Kang was supported by National Natural Science Foundation of China Project (11771369) and Key Project of Hunan Provincial Department of Education (17A210); Vasilev Vasilii Ivanovich was supported by Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (2018WK4006, 2019YZ3003)

In recent years, many numerical methods have been extended to fractional integro-differential equations. But most of them ignore an important problem. Even if the input function is smooth, the solutions of these equations would exhibit some weak singularity, which leads to non-smooth solutions, and a deteriorate order of convergence. To overcome this problem, we first study in detail the singularity of the fractional integro-differential equation, and then eliminate the singularity by introducing some smoothing transformation. We can maximize the convergence rate by adjusting the parameters in the auxiliary transformation. We use the Jacobi spectral-collocation method with global and high precision characteristics to solve the transformed equation. A comprehensive and rigorous error estimation under the $ L^{\infty} $- and $ L^{2}_{\omega^{\alpha, \beta}} $-norms is derived. Finally, we give specific numerical examples to show the accuracy of the theoretical estimation and the feasibility and effectiveness of the proposed method.

Citation: Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064
References:
[1]

W. M. Ahmad and R. EL-Khazali, Fractional-order dynamical models of love, Chaos Solitons Fractals, 33 (2007), 1367-1375.  doi: 10.1016/j.chaos.2006.01.098.  Google Scholar

[2]

A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals, 40 (2009), 521-529.  doi: 10.1016/j.chaos.2007.08.001.  Google Scholar

[3]

A. H. Bhrawy and M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, Appl. Math. Model., 40 (2016), 832-845.  doi: 10.1016/j.apm.2015.06.012.  Google Scholar

[4]

H. Brunner, Theory and Numerical Solution of Volterra Functional Integral Equations, HIT Summer Seminar, 2010. Google Scholar

[5] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004.  doi: 10.1017/CBO9780511543234.  Google Scholar
[6]

H. Brunner, Nonpolynomial spline collocation for Volterra equations with weakly singular kernel, SIAM J. Numer. Anal., 20 (1983), 1106-1119.  doi: 10.1137/0720080.  Google Scholar

[7]

P. Baratella and A. P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 163 (2004), 401-418.  doi: 10.1016/j.cam.2003.08.047.  Google Scholar

[8]

A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, 1997. Google Scholar

[9]

Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equationS with a weakly singular kernel, Math. Comp., 79 (2010), 147-167.  doi: 10.1090/S0025-5718-09-02269-8.  Google Scholar

[10]

K. Du, On well-conditioned spectral collocation and spectral methods by the integral reformulation, SIAM J. Sci. Comput., 38 (2016), A3247–A3263. doi: 10.1137/15M1046629.  Google Scholar

[11]

F. Ghoreishi and P. Mokhtary, Spectral collocation method for multi-order fractional differential equations, Int. J. Comput. Methods, 11 (2014), 1350072, 23 pp. doi: 10.1142/s0219876213500722.  Google Scholar

[12]

Z. Hao and W. Cao, An improved algorithm based on finite difference schemes for fractional Boundary Value Problems with nonsmooth solution, J. Sci. Comput., 73 (2017), 395-415.  doi: 10.1007/s10915-017-0417-8.  Google Scholar

[13]

J. H. He, Nonlinear Oscillation with Fractional Derivative and its Cahpinpalications, International Conference on Vibrating Engineering98, 1998. Google Scholar

[14]

J. H. He, Some applications of nonlinear fractional differential equations and therir approximations, Bulletin of Science Technology and Society, 15 (1999), 86-90.   Google Scholar

[15]

C. HuangY. J. JiaoL. L. Wang and Z. M. Zhang, Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions, SIAM J. Numer. Anal., 54 (2016), 3357-3387.  doi: 10.1137/16M1059278.  Google Scholar

[16]

L. HuangX. F. LiY. L. Zhao and X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput. Math. Appl., 62 (2011), 1127-1134.  doi: 10.1016/j.camwa.2011.03.037.  Google Scholar

[17]

M. JaniD. Bhatta and S. Javadi, Numerical solution of fractional integro-differential equations with nonlocal conditions, Appl. Appl. Math., 12 (2017), 98-111.  doi: 10.1007/s40314-019-0896-3.  Google Scholar

[18]

Y. J. JiaoL. L. Wang and C. Huang, Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis, J. Comput. Phys., 305 (2016), 1-28.  doi: 10.1016/j.jcp.2015.10.029.  Google Scholar

[19]

M. Kolk and A. Pedas, Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integro-differential equations with weakly singular kernels, WSEAS Trans. Math., 6 (2007), 537–544. http://www.crm.umontreal.ca/AARMS07/pdf/pedas.pdf  Google Scholar

[20]

X. Li and T. Tang, Convergence analysis of Jacobi spectral collocation methods for Abel–CVolterra integral equations of second kind, Front. Math. China, 7 (2012), 69-84.  doi: 10.1007/s11464-012-0170-0.  Google Scholar

[21]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131.  doi: 10.1137/080718942.  Google Scholar

[22]

H. Liang and M. Stynes, Collocation methods for general caputo two-point boundary value problems, J. Sci. Comput., 76 (2018), 390-425.  doi: 10.1007/s10915-017-0622-5.  Google Scholar

[23]

Ch. Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comp., 41 (1983), 87-102.  doi: 10.1090/S0025-5718-1983-0701626-6.  Google Scholar

[24]

G. Mastroianni and D. Occorsio, Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey., J. Comput. Appl. Math., 134 (2001), 325-341.  doi: 10.1016/S0377-0427(00)00557-4.  Google Scholar

[25]

S. Momani and R. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl., 52 (2006), 459-470.  doi: 10.1016/j.camwa.2006.02.011.  Google Scholar

[26]

G. Monegato and L. Scuderi, High order methods for weakly singular integral equations with nonsmooth input functions, Math. Comp., 67 (1998), 1493-1515.  doi: 10.1090/S0025-5718-98-01005-9.  Google Scholar

[27]

A. PedasE. Tamme and M. Vikerpuur, Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems, J. Comput. Appl. Math., 317 (2017), 1-16.  doi: 10.1016/j.cam.2016.11.022.  Google Scholar

[28]

I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[29]

J. Shen, T. Tang and L. L. Wang, Spectral Methods. Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[30]

Y. YangY. Chen and Y. Huang, Spectral-collocation method for fractional Fredholm integro-differential equations, J. Korean Math. Soc., 51 (2014), 203-224.  doi: 10.4134/JKMS.2014.51.1.203.  Google Scholar

[31]

Y. YangY. ChenY. Huang and H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, J. Comput. Appl. Math., 73 (2017), 1218-1232.  doi: 10.1016/j.camwa.2016.08.017.  Google Scholar

[32]

Y. YangW. QiaoJ. Wang and S. Zhang, Spectral collocation methods for nonlinear coupled time fractional Nernest-Planck equations in two dimensions and its convergence analysis, Comput. Math. Appl., 78 (2019), 1431-1449.  doi: 10.1016/j.camwa.2018.12.018.  Google Scholar

[33]

Y. YangY. Chen and Y. Huang, Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci. Ser. B (Engl. Ed.), 34 (2014), 673-690.  doi: 10.1016/S0252-9602(14)60039-4.  Google Scholar

[34]

C. Yang and J. Hou, Numerical solution of Volterra integro-differential equations of fractional order by Laplace decomposition method, International Journal of Mathematical, Computational, Natural and Physical Engineering, 7 (2013), 549-553.  doi: 10.5281/zenodo.1087866.  Google Scholar

[35]

Y. YangY. Huang and Y. Zhou, Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods, J. Comput. Appl. Math., 339 (2018), 389-404.  doi: 10.1016/j.cam.2017.04.003.  Google Scholar

[36]

Y. YangY. Huang and Y. Zhou, Numerical simulation of time fractional Cable equations and convergence analysis, Numer. Methods Partial Differential Equations, 34 (2018), 1556-1576.  doi: 10.1002/num.22225.  Google Scholar

[37]

Y. Yang and E. Tohidi, Numerical solution of multi-Pantograph delay boundary value problems via an efficient approach with the convergence analysis, Comput. Appl. Math., 38 (2019), Paper No. 127, 14 pp. doi: 10.1007/s40314-019-0896-3.  Google Scholar

[38]

M. A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103-122.  doi: 10.1016/j.cam.2019.01.046.  Google Scholar

show all references

References:
[1]

W. M. Ahmad and R. EL-Khazali, Fractional-order dynamical models of love, Chaos Solitons Fractals, 33 (2007), 1367-1375.  doi: 10.1016/j.chaos.2006.01.098.  Google Scholar

[2]

A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals, 40 (2009), 521-529.  doi: 10.1016/j.chaos.2007.08.001.  Google Scholar

[3]

A. H. Bhrawy and M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, Appl. Math. Model., 40 (2016), 832-845.  doi: 10.1016/j.apm.2015.06.012.  Google Scholar

[4]

H. Brunner, Theory and Numerical Solution of Volterra Functional Integral Equations, HIT Summer Seminar, 2010. Google Scholar

[5] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004.  doi: 10.1017/CBO9780511543234.  Google Scholar
[6]

H. Brunner, Nonpolynomial spline collocation for Volterra equations with weakly singular kernel, SIAM J. Numer. Anal., 20 (1983), 1106-1119.  doi: 10.1137/0720080.  Google Scholar

[7]

P. Baratella and A. P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 163 (2004), 401-418.  doi: 10.1016/j.cam.2003.08.047.  Google Scholar

[8]

A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, 1997. Google Scholar

[9]

Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equationS with a weakly singular kernel, Math. Comp., 79 (2010), 147-167.  doi: 10.1090/S0025-5718-09-02269-8.  Google Scholar

[10]

K. Du, On well-conditioned spectral collocation and spectral methods by the integral reformulation, SIAM J. Sci. Comput., 38 (2016), A3247–A3263. doi: 10.1137/15M1046629.  Google Scholar

[11]

F. Ghoreishi and P. Mokhtary, Spectral collocation method for multi-order fractional differential equations, Int. J. Comput. Methods, 11 (2014), 1350072, 23 pp. doi: 10.1142/s0219876213500722.  Google Scholar

[12]

Z. Hao and W. Cao, An improved algorithm based on finite difference schemes for fractional Boundary Value Problems with nonsmooth solution, J. Sci. Comput., 73 (2017), 395-415.  doi: 10.1007/s10915-017-0417-8.  Google Scholar

[13]

J. H. He, Nonlinear Oscillation with Fractional Derivative and its Cahpinpalications, International Conference on Vibrating Engineering98, 1998. Google Scholar

[14]

J. H. He, Some applications of nonlinear fractional differential equations and therir approximations, Bulletin of Science Technology and Society, 15 (1999), 86-90.   Google Scholar

[15]

C. HuangY. J. JiaoL. L. Wang and Z. M. Zhang, Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions, SIAM J. Numer. Anal., 54 (2016), 3357-3387.  doi: 10.1137/16M1059278.  Google Scholar

[16]

L. HuangX. F. LiY. L. Zhao and X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput. Math. Appl., 62 (2011), 1127-1134.  doi: 10.1016/j.camwa.2011.03.037.  Google Scholar

[17]

M. JaniD. Bhatta and S. Javadi, Numerical solution of fractional integro-differential equations with nonlocal conditions, Appl. Appl. Math., 12 (2017), 98-111.  doi: 10.1007/s40314-019-0896-3.  Google Scholar

[18]

Y. J. JiaoL. L. Wang and C. Huang, Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis, J. Comput. Phys., 305 (2016), 1-28.  doi: 10.1016/j.jcp.2015.10.029.  Google Scholar

[19]

M. Kolk and A. Pedas, Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integro-differential equations with weakly singular kernels, WSEAS Trans. Math., 6 (2007), 537–544. http://www.crm.umontreal.ca/AARMS07/pdf/pedas.pdf  Google Scholar

[20]

X. Li and T. Tang, Convergence analysis of Jacobi spectral collocation methods for Abel–CVolterra integral equations of second kind, Front. Math. China, 7 (2012), 69-84.  doi: 10.1007/s11464-012-0170-0.  Google Scholar

[21]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131.  doi: 10.1137/080718942.  Google Scholar

[22]

H. Liang and M. Stynes, Collocation methods for general caputo two-point boundary value problems, J. Sci. Comput., 76 (2018), 390-425.  doi: 10.1007/s10915-017-0622-5.  Google Scholar

[23]

Ch. Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comp., 41 (1983), 87-102.  doi: 10.1090/S0025-5718-1983-0701626-6.  Google Scholar

[24]

G. Mastroianni and D. Occorsio, Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey., J. Comput. Appl. Math., 134 (2001), 325-341.  doi: 10.1016/S0377-0427(00)00557-4.  Google Scholar

[25]

S. Momani and R. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl., 52 (2006), 459-470.  doi: 10.1016/j.camwa.2006.02.011.  Google Scholar

[26]

G. Monegato and L. Scuderi, High order methods for weakly singular integral equations with nonsmooth input functions, Math. Comp., 67 (1998), 1493-1515.  doi: 10.1090/S0025-5718-98-01005-9.  Google Scholar

[27]

A. PedasE. Tamme and M. Vikerpuur, Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems, J. Comput. Appl. Math., 317 (2017), 1-16.  doi: 10.1016/j.cam.2016.11.022.  Google Scholar

[28]

I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[29]

J. Shen, T. Tang and L. L. Wang, Spectral Methods. Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[30]

Y. YangY. Chen and Y. Huang, Spectral-collocation method for fractional Fredholm integro-differential equations, J. Korean Math. Soc., 51 (2014), 203-224.  doi: 10.4134/JKMS.2014.51.1.203.  Google Scholar

[31]

Y. YangY. ChenY. Huang and H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, J. Comput. Appl. Math., 73 (2017), 1218-1232.  doi: 10.1016/j.camwa.2016.08.017.  Google Scholar

[32]

Y. YangW. QiaoJ. Wang and S. Zhang, Spectral collocation methods for nonlinear coupled time fractional Nernest-Planck equations in two dimensions and its convergence analysis, Comput. Math. Appl., 78 (2019), 1431-1449.  doi: 10.1016/j.camwa.2018.12.018.  Google Scholar

[33]

Y. YangY. Chen and Y. Huang, Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci. Ser. B (Engl. Ed.), 34 (2014), 673-690.  doi: 10.1016/S0252-9602(14)60039-4.  Google Scholar

[34]

C. Yang and J. Hou, Numerical solution of Volterra integro-differential equations of fractional order by Laplace decomposition method, International Journal of Mathematical, Computational, Natural and Physical Engineering, 7 (2013), 549-553.  doi: 10.5281/zenodo.1087866.  Google Scholar

[35]

Y. YangY. Huang and Y. Zhou, Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods, J. Comput. Appl. Math., 339 (2018), 389-404.  doi: 10.1016/j.cam.2017.04.003.  Google Scholar

[36]

Y. YangY. Huang and Y. Zhou, Numerical simulation of time fractional Cable equations and convergence analysis, Numer. Methods Partial Differential Equations, 34 (2018), 1556-1576.  doi: 10.1002/num.22225.  Google Scholar

[37]

Y. Yang and E. Tohidi, Numerical solution of multi-Pantograph delay boundary value problems via an efficient approach with the convergence analysis, Comput. Appl. Math., 38 (2019), Paper No. 127, 14 pp. doi: 10.1007/s40314-019-0896-3.  Google Scholar

[38]

M. A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103-122.  doi: 10.1016/j.cam.2019.01.046.  Google Scholar

Figure 1.  The exact solution and numerical solution for $ N = 10 $ and $ \sigma $ = 1 and 3
Figure 2.  The exact solution and numerical solution for $ N = 10 $ and $ \sigma $ = 6 and 9
Figure 3.  For $ N = 10 $, $ \sigma $ takes values of 1-9 and 28, the error of $ L^\infty $ and $ L^2_{\omega^{\alpha-1, 0}} $ changes as the collocation point $ N $ increases
Figure 4.  The exact solution and numerical solution for $ N = 10 $ and $ \sigma $ = 1, 2 and 4
Figure 5.  For $ N = 10 $ and $ \sigma $ takes values of 1-6 and 14, the error of $ L^\infty $ and $ L^2_{\omega^{\alpha-1, 0}} $ changes as the collocation point $ N $ increases
Figure 6.  The exact solution and numerical solution for $ N = 10 $ and $ \sigma $ = 1, 2 and 4
Figure 7.  For $ N = 10 $ and $ \sigma $ takes values of 1-6 and 8, the error of $ L^\infty $ and $ L^2_{\omega^{\alpha-1, 0}} $ changes as the collocation point $ N $ increases
Table 1.  The $ L^{\infty} $- and $ L^2_{\omega^{\alpha-1, 0}} $-error for $ N = 10 $ and $ \sigma $ takes values of 1-9
$ N $ $ \sigma $ =1 $ \sigma $=2 $ \sigma $=3
$ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $
2 4.31E-03 4.31E-03 4.12E-04 5.06E-04 3.21E-05 3.14E-05
4 7.92E-04 7.07E-04 2.76E-05 2.84E-05 2.34E-08 1.87E-08
6 2.63E-04 2.32E-04 5.37E-06 4.37E-06 1.44E-11 1.05E-11
8 1.15E-04 1.01E-04 1.32E-06 1.05E-06 3.00E-15 1.76E-15
10 6.01E-05 5.26E-05 4.08E-07 3.32E-07 2.33E-15 1.20E-15
$ N $$ \sigma $ = 4$ \sigma $ = 5$ \sigma $ = 6
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
26.47E-036.21E-031.30E-021.24E-021.72E-021.65E-02
41.70E-051.29E-052.40E-051.75E-056.46E-094.82E-09
67.51E-075.35E-074.86E-073.18E-078.14E-105.29E-10
87.42E-085.85E-083.20E-082.20E-085.97E-123.60E-12
101.46E-081.05E-084.08E-092.89E-093.76E-141.94E-14
$ N $$ \sigma $ = 7$ \sigma $ = 8$ \sigma $ = 9
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
21.84E-021.77E-021.68E-021.61E-021.27E-021.21E-02
40.31E-030.22E-031.03E-030.73E-032.13E-031.52E-03
65.14E-073.09E-078.26E-074.92E-073.70E-072.28E-07
81.20E-086.94E-091.11E-085.96E-099.08E-105.12E-10
107.20E-104.42E-104.26E-102.40E-103.16E-111.68E-11
$ N $ $ \sigma $ =1 $ \sigma $=2 $ \sigma $=3
$ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $
2 4.31E-03 4.31E-03 4.12E-04 5.06E-04 3.21E-05 3.14E-05
4 7.92E-04 7.07E-04 2.76E-05 2.84E-05 2.34E-08 1.87E-08
6 2.63E-04 2.32E-04 5.37E-06 4.37E-06 1.44E-11 1.05E-11
8 1.15E-04 1.01E-04 1.32E-06 1.05E-06 3.00E-15 1.76E-15
10 6.01E-05 5.26E-05 4.08E-07 3.32E-07 2.33E-15 1.20E-15
$ N $$ \sigma $ = 4$ \sigma $ = 5$ \sigma $ = 6
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
26.47E-036.21E-031.30E-021.24E-021.72E-021.65E-02
41.70E-051.29E-052.40E-051.75E-056.46E-094.82E-09
67.51E-075.35E-074.86E-073.18E-078.14E-105.29E-10
87.42E-085.85E-083.20E-082.20E-085.97E-123.60E-12
101.46E-081.05E-084.08E-092.89E-093.76E-141.94E-14
$ N $$ \sigma $ = 7$ \sigma $ = 8$ \sigma $ = 9
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
21.84E-021.77E-021.68E-021.61E-021.27E-021.21E-02
40.31E-030.22E-031.03E-030.73E-032.13E-031.52E-03
65.14E-073.09E-078.26E-074.92E-073.70E-072.28E-07
81.20E-086.94E-091.11E-085.96E-099.08E-105.12E-10
107.20E-104.42E-104.26E-102.40E-103.16E-111.68E-11
Table 2.  The $ L^{\infty} $- and $ L^2_{\omega^{\alpha-1, 0}} $-error for $ N = 10 $ and $ \sigma $ takes values of 1-6
$ N $ $ \sigma $=1 $ \sigma $=2 $ \sigma $=3
$ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $
2 3.13E-04 4.55E-04 2.79E-04 3.21E-04 1.86E-03 2.14E-03
4 2.30E-05 2.85E-05 2.11E-07 1.85E-07 3.37E-06 3.58E-06
6 4.27E-06 5.23E-06 1.62E-10 1.54E-10 5.11E-07 4.18E-07
8 1.38E-06 1.51E-06 1.01E-13 8.56E-14 6.87E-08 6.62E-08
10 5.29E-07 5.61E-07 4.77E-15 4.36E-15 1.88E-08 1.57E-08
$ N $$ \sigma $ = 4 $ \sigma $ = 5 $ \sigma $ = 6
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
23.94E-034.53E-035.31E-036.11E-033.86E-034.44E-03
42.70E-052.51E-051.38E-041.27E-044.51E-044.12E-04
63.23E-072.62E-078.69E-077.52E-071.09E-069.15E-07
81.44E-091.12E-095.54E-083.90E-081.67E-071.18E-07
103.14E-112.70E-112.06E-091.61E-093.68E-092.52E-09
$ N $ $ \sigma $=1 $ \sigma $=2 $ \sigma $=3
$ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $
2 3.13E-04 4.55E-04 2.79E-04 3.21E-04 1.86E-03 2.14E-03
4 2.30E-05 2.85E-05 2.11E-07 1.85E-07 3.37E-06 3.58E-06
6 4.27E-06 5.23E-06 1.62E-10 1.54E-10 5.11E-07 4.18E-07
8 1.38E-06 1.51E-06 1.01E-13 8.56E-14 6.87E-08 6.62E-08
10 5.29E-07 5.61E-07 4.77E-15 4.36E-15 1.88E-08 1.57E-08
$ N $$ \sigma $ = 4 $ \sigma $ = 5 $ \sigma $ = 6
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
23.94E-034.53E-035.31E-036.11E-033.86E-034.44E-03
42.70E-052.51E-051.38E-041.27E-044.51E-044.12E-04
63.23E-072.62E-078.69E-077.52E-071.09E-069.15E-07
81.44E-091.12E-095.54E-083.90E-081.67E-071.18E-07
103.14E-112.70E-112.06E-091.61E-093.68E-092.52E-09
Table 3.  The $ L^{\infty} $-and $ L^2_{\omega^{\alpha-1, 0}} $-error for $ N = 10 $ and $ \sigma $ takes values of 1-6
$ N $ $ \sigma $=1 $ \sigma $=2 $ \sigma $=3
$ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $
2 3.34E-04 6.18E-04 3.65E-03 6.78E-03 3.94E-02 6.96E-02
4 5.68E-05 9.69E-05 3.54E-06 5.57E-06 1.79E-04 2.87E-04
6 1.17E-05 1.97E-05 1.77E-08 2.78E-08 5.01E-07 7.54E-07
8 3.58E-06 6.02E-06 1.66E-09 2.60E-09 3.82E-09 4.57E-09
10 1.39E-06 2.33E-06 2.68E-10 4.17E-10 2.67E-10 2.90E-10
$ N $$ \sigma $ = 4 $ \sigma $ = 5 $ \sigma $ = 6
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
27.75E-021.37E-019.07E-021.60E-018.04E-021.42E-01
47.27E-041.25E-031.02E-031.21E-032.33E-033.89E-03
61.27E-051.84E-051.00E-041.47E-043.62E-045.36E-04
86.24E-088.53E-081.10E-061.50E-068.27E-061.13E-05
102.09E-102.73E-108.63E-091.13E-081.15E-071.50E-07
$ N $ $ \sigma $=1 $ \sigma $=2 $ \sigma $=3
$ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $ $ \|u-U\|_{L^\infty} $ $ \|u-U\|_{L^2} $
2 3.34E-04 6.18E-04 3.65E-03 6.78E-03 3.94E-02 6.96E-02
4 5.68E-05 9.69E-05 3.54E-06 5.57E-06 1.79E-04 2.87E-04
6 1.17E-05 1.97E-05 1.77E-08 2.78E-08 5.01E-07 7.54E-07
8 3.58E-06 6.02E-06 1.66E-09 2.60E-09 3.82E-09 4.57E-09
10 1.39E-06 2.33E-06 2.68E-10 4.17E-10 2.67E-10 2.90E-10
$ N $$ \sigma $ = 4 $ \sigma $ = 5 $ \sigma $ = 6
$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $$ \|u-U\|_{L^\infty} $$ \|u-U\|_{L^2} $
27.75E-021.37E-019.07E-021.60E-018.04E-021.42E-01
47.27E-041.25E-031.02E-031.21E-032.33E-033.89E-03
61.27E-051.84E-051.00E-041.47E-043.62E-045.36E-04
86.24E-088.53E-081.10E-061.50E-068.27E-061.13E-05
102.09E-102.73E-108.63E-091.13E-081.15E-071.50E-07
[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[10]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[11]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[12]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[20]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

 Impact Factor: 0.263

Metrics

  • PDF downloads (98)
  • HTML views (231)
  • Cited by (0)

Other articles
by authors

[Back to Top]