September  2020, 28(3): 1357-1374. doi: 10.3934/era.2020072

Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Mathematisches Institut, Universität Tübingen, D-72076 Tübingen, Germany

3. 

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

Received  March 2020 Published  July 2020

In this paper we study the continuity in initial data of a classical reaction-diffusion equation with arbitrary $ p>2 $ order nonlinearity and in any space dimension $ N \geqslant 1 $. It is proved that the weak solutions can be $ (L^2, L^\gamma\cap H_0^1) $-continuous in initial data for arbitrarily large $ \gamma \geqslant 2 $ (independent of the physical parameters of the system), i.e., can converge in the norm of any $ L^\gamma\cap H_0^1 $ as the corresponding initial values converge in $ L^2 $. In fact, the system is shown to be $ (L^2, L^\gamma\cap H_0^1) $-smoothing in a H$ \ddot{\rm o} $lder way. Applying this to the global attractor we find that, with external forcing only in $ L^2 $, the attractor $ \mathscr{A} $ attracts bounded subsets of $ L^2 $ in the norm of any $ L^\gamma\cap H_0^1 $, and that every translation set $ \mathscr{A}-z_0 $ of $ \mathscr{A} $ for any $ z_0\in \mathscr{A} $ is a finite dimensional compact subset of $ L^\gamma\cap H_0^1 $. The main technique we employ is a combination of a Moser iteration and a decomposition of the nonlinearity, by which the interpolation inequalities are avoided and the new continuity result is obtained without any restrictions on the order $ p>2 $ of the nonlinearity and the space dimension $ N \geqslant 1 $.

Citation: Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[2]

T. Bartsch and Z. Liu, On a superlinear elliptic $p$-Laplacian equation, J. Differential Equations, 198 (2004), 149-175.  doi: 10.1016/j.jde.2003.08.001.  Google Scholar

[3]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[4]

T. Caraballo and S. Sonner, Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 6383-6403.  doi: 10.3934/dcds.2017277.  Google Scholar

[5]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM J. Math. Anal., 47 (2015), 1530-1561.  doi: 10.1137/140978995.  Google Scholar

[6]

H. CuiJ. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynam. Differential Equations, 30 (2018), 1873-1898.  doi: 10.1007/s10884-017-9617-z.  Google Scholar

[7]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[8]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, RAM: Research in Applied Mathematics, 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[11]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[12]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 103–200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[13]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.  doi: 10.3934/cpaa.2007.6.481.  Google Scholar

[14]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[15]

J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186, Cambridge University Press, Cambridge, 2011. doi: 10.1017/CBO9780511933912.  Google Scholar

[16]

A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 241-281.  doi: 10.1007/s40072-013-0007-1.  Google Scholar

[17]

C. Sun, Asymptotic regularity for some dissipative equations, J. Differential Equations, 248 (2010), 342-362.  doi: 10.1016/j.jde.2009.08.007.  Google Scholar

[18]

T. Trujillo and B. Wang, Continuity of strong solutions of the reaction-diffusion equation in initial data, Nonlinear Anal., 69 (2008), 2525-2532.  doi: 10.1016/j.na.2007.08.032.  Google Scholar

[19]

S. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 24 (2000), 1–25.  Google Scholar

[20]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[21]

W. Zhao and Y. Li, $ (L^2, L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502.  doi: 10.1016/j.na.2011.08.050.  Google Scholar

[22]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[23]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105.  doi: 10.1016/j.camwa.2016.04.004.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[2]

T. Bartsch and Z. Liu, On a superlinear elliptic $p$-Laplacian equation, J. Differential Equations, 198 (2004), 149-175.  doi: 10.1016/j.jde.2003.08.001.  Google Scholar

[3]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[4]

T. Caraballo and S. Sonner, Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 6383-6403.  doi: 10.3934/dcds.2017277.  Google Scholar

[5]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM J. Math. Anal., 47 (2015), 1530-1561.  doi: 10.1137/140978995.  Google Scholar

[6]

H. CuiJ. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynam. Differential Equations, 30 (2018), 1873-1898.  doi: 10.1007/s10884-017-9617-z.  Google Scholar

[7]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[8]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, RAM: Research in Applied Mathematics, 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[11]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[12]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 103–200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[13]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.  doi: 10.3934/cpaa.2007.6.481.  Google Scholar

[14]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[15]

J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186, Cambridge University Press, Cambridge, 2011. doi: 10.1017/CBO9780511933912.  Google Scholar

[16]

A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 241-281.  doi: 10.1007/s40072-013-0007-1.  Google Scholar

[17]

C. Sun, Asymptotic regularity for some dissipative equations, J. Differential Equations, 248 (2010), 342-362.  doi: 10.1016/j.jde.2009.08.007.  Google Scholar

[18]

T. Trujillo and B. Wang, Continuity of strong solutions of the reaction-diffusion equation in initial data, Nonlinear Anal., 69 (2008), 2525-2532.  doi: 10.1016/j.na.2007.08.032.  Google Scholar

[19]

S. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 24 (2000), 1–25.  Google Scholar

[20]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[21]

W. Zhao and Y. Li, $ (L^2, L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502.  doi: 10.1016/j.na.2011.08.050.  Google Scholar

[22]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[23]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105.  doi: 10.1016/j.camwa.2016.04.004.  Google Scholar

[1]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[2]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[3]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[4]

Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254

[5]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[6]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[7]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[8]

Alberto Maspero, Beat Schaad. One smoothing property of the scattering map of the KdV on $\mathbb{R}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1493-1537. doi: 10.3934/dcds.2016.36.1493

[9]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[10]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[11]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[12]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[13]

Ahmet Sahiner, Nurullah Yilmaz, Gulden Kapusuz. A novel modeling and smoothing technique in global optimization. Journal of Industrial & Management Optimization, 2019, 15 (1) : 113-130. doi: 10.3934/jimo.2018035

[14]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[15]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[16]

Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123

[17]

Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial & Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53

[18]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[19]

Marco Cabral, Ricardo Rosa, Roger Temam. Existence and dimension of the attractor for the Bénard problem on channel-like domains. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 89-116. doi: 10.3934/dcds.2004.10.89

[20]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

2018 Impact Factor: 0.263

Article outline

[Back to Top]