December  2020, 28(4): 1395-1418. doi: 10.3934/era.2020074

The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay

1. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

2. 

Laboratoire de Mathématiques et Applications, UMR CNRS 7348-SP2MI, Université de Poitiers, Boulevard Marie et Pierre Curie-Téléport 2, 86962, Chasseneuil Futuroscope Cedex, France

3. 

Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, China

4. 

School of Mathematics and Statistics, Hubei University of Arts and Science, Xiangyang 441053, China

* Corresponding author: Xingjie Yan

Received  March 2020 Revised  June 2020 Published  July 2020

Fund Project: Research partly supported by the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039)

This paper concerns the stability of pullback attractors for 3D Brinkman-Forchheimer equation with delays. By some regular estimates and the variable index to deal with the delay term, we get the sufficient conditions for asymptotic stability of trajectories inside the pullback attractors for a fluid flow model in porous medium by generalized Grashof numbers.

Citation: Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074
References:
[1]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[2]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York–Heidelberg–Dordrecht–London, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

J. García-LuengoP. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D Navier-Stokes model, Disc. Contin. Dyn. Syst., 34 (2014), 4085-4105.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[5]

D. Li, Q. Liu and X. Ju, Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, Accepted, 2020. Google Scholar

[6]

L. LiX.-G. YangX. LiX. Yan and Y. Lu, Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (Ⅰ), Asymptot. Anal., 113 (2019), 167-194.  doi: 10.3233/ASY-181512.  Google Scholar

[7]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[8]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[9]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[10]

Y. Ouyang and L. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[11]

Y. Qin, Integral and Discrete Inequalities and Their Applications, Vol. Ⅰ: Linear Inequalities and Vol. Ⅱ: Nonlinear Inequalities, Birkhäser, Basel/Boston/Berlin, 2016.  Google Scholar

[12]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[13]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[14] R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, Cambridge, 2001.   Google Scholar
[15]

D. Uǧurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[16]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495.  doi: 10.1002/mma.985.  Google Scholar

[17]

Y. WangX. Yang and Y. Lu, Remarks on nontrivial pullback attractors of the 2-D Navier-Stokes equations with delays, Math. Meth. Appl. Sci., 43 (2020), 1892-1900.   Google Scholar

[18]

S. Whitaker, The Forchheimer equation: A theoretical development, Transp. Porous Media, 25 (1996), 27-62.  doi: 10.1007/BF00141261.  Google Scholar

[19]

S. Whitaker, Flow in porous media Ⅰ: A theoretical derivation of Darcy's law, Transp. Porous Media, 1 (1986), 3-25.  doi: 10.1007/BF01036523.  Google Scholar

[20]

X.-G. YangJ. Zhang and S. Wang, Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay, Disc. Contin. Dyn. Syst., 40 (2020), 1493-1515.  doi: 10.3934/dcds.2020084.  Google Scholar

[21]

Y. YouC. Zhao and S. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Disc. Contin. Dyn. Syst., 32 (2012), 3787-3800.  doi: 10.3934/dcds.2012.32.3787.  Google Scholar

show all references

References:
[1]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[2]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York–Heidelberg–Dordrecht–London, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

J. García-LuengoP. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D Navier-Stokes model, Disc. Contin. Dyn. Syst., 34 (2014), 4085-4105.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[5]

D. Li, Q. Liu and X. Ju, Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, Accepted, 2020. Google Scholar

[6]

L. LiX.-G. YangX. LiX. Yan and Y. Lu, Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (Ⅰ), Asymptot. Anal., 113 (2019), 167-194.  doi: 10.3233/ASY-181512.  Google Scholar

[7]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[8]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[9]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[10]

Y. Ouyang and L. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[11]

Y. Qin, Integral and Discrete Inequalities and Their Applications, Vol. Ⅰ: Linear Inequalities and Vol. Ⅱ: Nonlinear Inequalities, Birkhäser, Basel/Boston/Berlin, 2016.  Google Scholar

[12]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[13]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[14] R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, Cambridge, 2001.   Google Scholar
[15]

D. Uǧurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[16]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495.  doi: 10.1002/mma.985.  Google Scholar

[17]

Y. WangX. Yang and Y. Lu, Remarks on nontrivial pullback attractors of the 2-D Navier-Stokes equations with delays, Math. Meth. Appl. Sci., 43 (2020), 1892-1900.   Google Scholar

[18]

S. Whitaker, The Forchheimer equation: A theoretical development, Transp. Porous Media, 25 (1996), 27-62.  doi: 10.1007/BF00141261.  Google Scholar

[19]

S. Whitaker, Flow in porous media Ⅰ: A theoretical derivation of Darcy's law, Transp. Porous Media, 1 (1986), 3-25.  doi: 10.1007/BF01036523.  Google Scholar

[20]

X.-G. YangJ. Zhang and S. Wang, Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay, Disc. Contin. Dyn. Syst., 40 (2020), 1493-1515.  doi: 10.3934/dcds.2020084.  Google Scholar

[21]

Y. YouC. Zhao and S. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Disc. Contin. Dyn. Syst., 32 (2012), 3787-3800.  doi: 10.3934/dcds.2012.32.3787.  Google Scholar

[1]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[4]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[5]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[6]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[7]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[8]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[9]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[10]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[11]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[12]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[13]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[14]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[15]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[16]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[17]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[18]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[19]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

 Impact Factor: 0.263

Metrics

  • PDF downloads (64)
  • HTML views (204)
  • Cited by (0)

Other articles
by authors

[Back to Top]