• Previous Article
    Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation
  • ERA Home
  • This Issue
  • Next Article
    Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium
doi: 10.3934/era.2020078

A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

* Corresponding author: Jerry Zhijian Yang

Received  March 2020 Revised  June 2020 Published  July 2020

We numerically investigate the superconvergence property of the discontinuous Galerkin method by patch reconstruction. The convergence rate $ 2m+1 $ can be observed at the grid points and barycenters in one dimensional case with uniform partitions. The convergence rate $ m + 2 $ is achieved at the center of the element faces in two and three dimensions. The meshes are uniformly partitioned into triangles/tetrahedrons or squares/hexahedrons. We also demonstrate the details of the implementation of the proposed method. The numerical results for all three dimensional cases are presented to illustrate the propositions.

Citation: Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, doi: 10.3934/era.2020078
References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 2000. doi: 10.1002/9781118032824.  Google Scholar

[2]

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.  doi: 10.1137/0719052.  Google Scholar

[3]

M. Bakker, One-dimensional Galerkin methods and superconvergence at interior nodal points, SIAM J. Numer. Anal., 21 (1984), 101-110.  doi: 10.1137/0721006.  Google Scholar

[4]

W. CaoC.-W. ShuY. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations, SIAM J. Numer. Anal., 53 (2015), 1651-1671.  doi: 10.1137/140996203.  Google Scholar

[5]

P. Castillo, A superconvergence result for discontinuous Galerkin methods applied to elliptic problems, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4675-4685.  doi: 10.1016/S0045-7825(03)00445-6.  Google Scholar

[6]

B. CockburnJ. Guzmán and H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp., 78 (2009), 1-24.  doi: 10.1090/S0025-5718-08-02146-7.  Google Scholar

[7]

B. CockburnG. KanschatI. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285.  doi: 10.1137/S0036142900371544.  Google Scholar

[8]

B. CockburnW. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems, Math. Comp., 81 (2012), 1327-1353.  doi: 10.1090/S0025-5718-2011-02550-0.  Google Scholar

[9]

B. CockburnW. Qiu and K. Shi, Superconvergent HDG methods on isoparametric elements for second-order elliptic problems, SIAM J. Numer. Anal., 50 (2012), 1417-1432.  doi: 10.1137/110840790.  Google Scholar

[10]

J. Douglas Jr. and T. Dupont, Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, in Topics in Numerical Analysis, Academic Press, London, 1973, 89–92.  Google Scholar

[11]

R. LiP. MingZ. SunF. Yang and Z. Yang, A discontinuous Galerkin method by patch reconstruction for biharmonic problem, J. Comput. Math., 37 (2019), 563-580.  doi: 10.4208/jcm.1807-m2017-0276.  Google Scholar

[12]

R. LiP. MingZ. Sun and Z. Yang, An arbitrary-order discontinuous Galerkin method with one unknown per element, J. Sci. Comput., 80 (2019), 268-288.  doi: 10.1007/s10915-019-00937-y.  Google Scholar

[13]

R. LiZ. SunF. Yang and Z. Yang, A finite element method by patch reconstruction for the Stokes problem using mixed formulations, J. Comput. Appl. Math., 353 (2019), 1-20.  doi: 10.1016/j.cam.2018.12.017.  Google Scholar

[14]

R. LiZ. Sun and Z. Yang, A discontinuous Galerkin method for Stokes equation by divergencefree patch reconstruction, Numer. Methods Partial Differential Equations, 36 (2020), 756-771.  doi: 10.1002/num.22449.  Google Scholar

[15]

R. Li, Z. Sun and F. Yang, Solving eigenvalue problems in a discontinuous approximation space by patch reconstruction, SIAM J. Sci. Comput., 41 (2019), A3381–A3400. doi: 10.1137/19M123693X.  Google Scholar

[16]

R. Li and F. Yang, A least squares method for linear elasticity using a patch reconstructed space, Comput. Methods Appl. Mech. Engrg., 363 (2020), 19pp. doi: 10.1016/j.cma.2020.112902.  Google Scholar

[17]

R. Li and F. Yang, A sequential least squares method for Poisson equation using a patch reconstructed space, SIAM J. Numer. Anal., 58 (2020), 353-374.  doi: 10.1137/19M1239593.  Google Scholar

[18]

R. Lin and Z. Zhang, Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems, Appl. Math., 54 (2009), 251-266.  doi: 10.1007/s10492-009-0016-6.  Google Scholar

[19]

Z. SunJ. Liu and P. Wang, A discontinuous Galerkin method by patch reconstruction for convection-diffusion problems, Adv. Appl. Math. Mech., 12 (2020), 729-747.  doi: 10.4208/aamm.OA-2019-0193.  Google Scholar

[20]

B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 135 (1997), 227-248.  doi: 10.1016/0021-9991(79)90145-1.  Google Scholar

[21]

L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, 1605, Springer-Verlag, Berlin, 1995. doi: 10.1007/BFb0096835.  Google Scholar

[22]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[23]

R. WangR. ZhangX. Zhang and Z. Zhang, Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin methods, Numer. Methods Partial Differential Equations, 34 (2018), 317-335.  doi: 10.1002/num.22201.  Google Scholar

[24]

Z. XieZ. Zhang and Z. Zhang, A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems, J. Comput. Math., 27 (2009), 280-298.   Google Scholar

[25]

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations, SIAM J. Numer. Anal., 50 (2012), 3110-3133.  doi: 10.1137/110857647.  Google Scholar

[26]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.  doi: 10.1002/nme.1620330702.  Google Scholar

show all references

References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 2000. doi: 10.1002/9781118032824.  Google Scholar

[2]

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.  doi: 10.1137/0719052.  Google Scholar

[3]

M. Bakker, One-dimensional Galerkin methods and superconvergence at interior nodal points, SIAM J. Numer. Anal., 21 (1984), 101-110.  doi: 10.1137/0721006.  Google Scholar

[4]

W. CaoC.-W. ShuY. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations, SIAM J. Numer. Anal., 53 (2015), 1651-1671.  doi: 10.1137/140996203.  Google Scholar

[5]

P. Castillo, A superconvergence result for discontinuous Galerkin methods applied to elliptic problems, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4675-4685.  doi: 10.1016/S0045-7825(03)00445-6.  Google Scholar

[6]

B. CockburnJ. Guzmán and H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp., 78 (2009), 1-24.  doi: 10.1090/S0025-5718-08-02146-7.  Google Scholar

[7]

B. CockburnG. KanschatI. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285.  doi: 10.1137/S0036142900371544.  Google Scholar

[8]

B. CockburnW. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems, Math. Comp., 81 (2012), 1327-1353.  doi: 10.1090/S0025-5718-2011-02550-0.  Google Scholar

[9]

B. CockburnW. Qiu and K. Shi, Superconvergent HDG methods on isoparametric elements for second-order elliptic problems, SIAM J. Numer. Anal., 50 (2012), 1417-1432.  doi: 10.1137/110840790.  Google Scholar

[10]

J. Douglas Jr. and T. Dupont, Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, in Topics in Numerical Analysis, Academic Press, London, 1973, 89–92.  Google Scholar

[11]

R. LiP. MingZ. SunF. Yang and Z. Yang, A discontinuous Galerkin method by patch reconstruction for biharmonic problem, J. Comput. Math., 37 (2019), 563-580.  doi: 10.4208/jcm.1807-m2017-0276.  Google Scholar

[12]

R. LiP. MingZ. Sun and Z. Yang, An arbitrary-order discontinuous Galerkin method with one unknown per element, J. Sci. Comput., 80 (2019), 268-288.  doi: 10.1007/s10915-019-00937-y.  Google Scholar

[13]

R. LiZ. SunF. Yang and Z. Yang, A finite element method by patch reconstruction for the Stokes problem using mixed formulations, J. Comput. Appl. Math., 353 (2019), 1-20.  doi: 10.1016/j.cam.2018.12.017.  Google Scholar

[14]

R. LiZ. Sun and Z. Yang, A discontinuous Galerkin method for Stokes equation by divergencefree patch reconstruction, Numer. Methods Partial Differential Equations, 36 (2020), 756-771.  doi: 10.1002/num.22449.  Google Scholar

[15]

R. Li, Z. Sun and F. Yang, Solving eigenvalue problems in a discontinuous approximation space by patch reconstruction, SIAM J. Sci. Comput., 41 (2019), A3381–A3400. doi: 10.1137/19M123693X.  Google Scholar

[16]

R. Li and F. Yang, A least squares method for linear elasticity using a patch reconstructed space, Comput. Methods Appl. Mech. Engrg., 363 (2020), 19pp. doi: 10.1016/j.cma.2020.112902.  Google Scholar

[17]

R. Li and F. Yang, A sequential least squares method for Poisson equation using a patch reconstructed space, SIAM J. Numer. Anal., 58 (2020), 353-374.  doi: 10.1137/19M1239593.  Google Scholar

[18]

R. Lin and Z. Zhang, Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems, Appl. Math., 54 (2009), 251-266.  doi: 10.1007/s10492-009-0016-6.  Google Scholar

[19]

Z. SunJ. Liu and P. Wang, A discontinuous Galerkin method by patch reconstruction for convection-diffusion problems, Adv. Appl. Math. Mech., 12 (2020), 729-747.  doi: 10.4208/aamm.OA-2019-0193.  Google Scholar

[20]

B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 135 (1997), 227-248.  doi: 10.1016/0021-9991(79)90145-1.  Google Scholar

[21]

L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, 1605, Springer-Verlag, Berlin, 1995. doi: 10.1007/BFb0096835.  Google Scholar

[22]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[23]

R. WangR. ZhangX. Zhang and Z. Zhang, Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin methods, Numer. Methods Partial Differential Equations, 34 (2018), 317-335.  doi: 10.1002/num.22201.  Google Scholar

[24]

Z. XieZ. Zhang and Z. Zhang, A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems, J. Comput. Math., 27 (2009), 280-298.   Google Scholar

[25]

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations, SIAM J. Numer. Anal., 50 (2012), 3110-3133.  doi: 10.1137/110857647.  Google Scholar

[26]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.  doi: 10.1002/nme.1620330702.  Google Scholar

Figure 2.1.  The uniform triangle mesh and the appropriate patch(left)/ the inappropriate patch(right)
Figure 3.1.  The way to refine the mesh
Figure 3.2.  Uniform square mesh
Figure 3.3.  The uniform tetrahedron mesh (left)/ and the hexahedron mesh(right)
Figure 4.1.  The sparsity patterns of the linear systems: The linear reconstruction with $ 7 $ patch size(left)/The linear reconstruction with $ 16 $ patch size(middle)/The quadratic reconstruction with $ 16 $ patch size(right)
Figure 4.2.  The convergence order of $ \|u-\mathcal{{R}}u_h\|_{L^2(\Omega)} $(left)/$ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $(middle)/$ |u-\mathcal{{R}}u_h|_{h} $(right) with different order $ m $ in 1D
Figure 4.3.  The convergence order of $ \|u-\mathcal{{R}}u_h\|_{L^2(\Omega)} $(left)/$ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $(right) with different order $ m $ in 2D triangle mesh
Figure 4.4.  The convergence order of $ \|u-\mathcal{{R}}u_h\|_{L^2(\Omega)} $(left)/$ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $(middle))/$ |u-\mathcal{{R}}u_h|_{h} $(right) with different order $ m $ in 2d square mesh
Figure 4.5.  The convergence order of hexahedron mesh(left) / tetrahedron mesh(right) of linear reconstruction with $ L^2 $ norm and $ |\cdot|_{h} $ quantity in 3D
Table 4.1.  The convergence order of the different norms and quantity in 1D
$ m $ $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $ error order $ |u-\mathcal{{R}}u_h|_{h} $ error order
1 1.9603 2.9605 3.0536
2 3.2727 5.0225 5.0127
3 4.2114 6.8449 6.8847
$ m $ $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $ error order $ |u-\mathcal{{R}}u_h|_{h} $ error order
1 1.9603 2.9605 3.0536
2 3.2727 5.0225 5.0127
3 4.2114 6.8449 6.8847
Table 4.2.  The convergence rate of different norms in 2D triangle mesh
$ m $ $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $ error order
1 1.9841 3.1221
2 3.3599 4.2205
3 4.0463 4.9108
4 5.2886 5.8989
$ m $ $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $ error order
1 1.9841 3.1221
2 3.3599 4.2205
3 4.0463 4.9108
4 5.2886 5.8989
Table 4.3.  The convergence rate of different norms and quantity in 2D square mesh
$ m $ $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $ error order $ |u-\mathcal{{R}}u_h|_{h} $ error order
1 2.1375 2.9830 2.9666
2 3.0613 3.9890 3.9863
3 4.2076 4.8476 4.9693
4 4.9222 6.0021 6.0122
$ m $ $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{h}} $ error order $ |u-\mathcal{{R}}u_h|_{h} $ error order
1 2.1375 2.9830 2.9666
2 3.0613 3.9890 3.9863
3 4.2076 4.8476 4.9693
4 4.9222 6.0021 6.0122
Table 4.4.  The convergence order of linear reconstruction with $ L^2 $ norm and $ |\cdot|_{h} $ quantity in 3D mesh
Mesh type $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ |u-\mathcal{{R}}u_h|_{h} $ error order
Tetrahedron 1.9468 3.0814
Hexahedron 2.1064 3.0191
Mesh type $ \|\,{u-\mathcal{{R}}u_h}\,\|_{{L^2(\Omega)}} $ error order $ |u-\mathcal{{R}}u_h|_{h} $ error order
Tetrahedron 1.9468 3.0814
Hexahedron 2.1064 3.0191
[1]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[2]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[3]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[4]

Qingjie Hu, Zhihao Ge, Yinnian He. Discontinuous Galerkin method for the Helmholtz transmission problem in two-level homogeneous media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2923-2948. doi: 10.3934/dcdsb.2020046

[5]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[6]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[7]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[8]

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic & Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025

[9]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[10]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[11]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[12]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[13]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[14]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[15]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[16]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[17]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[18]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[19]

Tobias Breiten, Karl Kunisch, Laurent Pfeiffer. Numerical study of polynomial feedback laws for a bilinear control problem. Mathematical Control & Related Fields, 2018, 8 (3&4) : 557-582. doi: 10.3934/mcrf.2018023

[20]

Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (160)
  • HTML views (28)
  • Cited by (0)

Other articles
by authors

[Back to Top]