December  2020, 28(4): 1563-1571. doi: 10.3934/era.2020082

Gorenstein global dimensions relative to balanced pairs

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

2. 

School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China

* Corresponding author: Rongmin Zhu

Received  January 2020 Revised  May 2020 Published  July 2020

Fund Project: The first author is supported by the NSF of China (Grants No. 11771202)

Let $ \mathcal{G}(\mathcal{X}) $ and $ \mathcal{G}(\mathcal{Y}) $ be Gorenstein subcategories induced by an admissible balanced pair $ (\mathcal{X}, \mathcal{Y}) $ in an abelian category $ \mathcal{A} $. In this paper, we establish Gorenstein homological dimensions in terms of these two subcategories and investigate the Gorenstein global dimensions of $ \mathcal{A} $ induced by the balanced pair $ (\mathcal{X}, \mathcal{Y}) $. As a consequence, we give some new characterizations of pure global dimensions and Gorenstein global dimensions of a ring $ R $.

Citation: Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082
References:
[1]

A. Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stablization, Comm. Algebra, 28 (2000), 4547-4596.  doi: 10.1080/00927870008827105.  Google Scholar

[2]

D. BennisJ. R. García Rozas and L. Oyanarte, On the stability question of Gorenstein categories, Appl. Categ. Structures, 25 (2017), 907-915.  doi: 10.1007/s10485-016-9478-3.  Google Scholar

[3]

X. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra, 324 (2010), 2718-2731.  doi: 10.1016/j.jalgebra.2010.09.002.  Google Scholar

[4]

I. Emmanouil, On the finiteness of Gorenstein homological dimensions, J. Algebra, 372 (2012), 376-396.  doi: 10.1016/j.jalgebra.2012.09.018.  Google Scholar

[5]

E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. doi: 10.1515/9783110215212.  Google Scholar

[6]

S. Estrada, M. A. Pérez and H. Zhu, Balanced pairs, cotorsion triplets and quiver representations, Proc. Edinb. Math. Soc. (2), 63 (2020), 67–90. doi: 10.1017/S0013091519000270.  Google Scholar

[7]

T. V. Gedrich and K. W. Gruenberg, Complete cohomological functors on groups, Topology Appl., 25 (1987), 203-223.  doi: 10.1016/0166-8641(87)90015-0.  Google Scholar

[8]

J. Gillespie, Model structures on moules over Ding-Chen rings, Homology Homotopy Appl., 12 (2010), 61-73.  doi: 10.4310/HHA.2010.v12.n1.a6.  Google Scholar

[9]

J. Gillespie, On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mountain J. Math., 47 (2017), 2641-2673.  doi: 10.1216/RMJ-2017-47-8-2641.  Google Scholar

[10]

H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167-193.  doi: 10.1016/j.jpaa.2003.11.007.  Google Scholar

[11]

Z. Huang, Proper resolutions and Gorenstein categories, J. Algebra, 393 (2013), 142-169.  doi: 10.1016/j.jalgebra.2013.07.008.  Google Scholar

[12]

H. LiJ. Wang and Z. Huang, Applications of balanced pairs, Sci. China Math., 59 (2016), 861-874.  doi: 10.1007/s11425-015-5094-1.  Google Scholar

[13]

S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. (2), 77 (2008), 481–502. doi: 10.1112/jlms/jdm124.  Google Scholar

[14]

D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math., 96 (1977), 91-116.  doi: 10.4064/fm-96-2-91-116.  Google Scholar

[15]

X. Tang, On $F$-Gorenstein dimensions, J. Algebra Appl., 13 (2014), 14pp. doi: 10.1142/S0219498814500224.  Google Scholar

[16]

A. Xu and N. Ding, On stability of Gorenstein categories, Comm. Algebra, 41 (2013), 3793-3804.  doi: 10.1080/00927872.2012.677892.  Google Scholar

[17]

X. Yang, Gorenstein categories $\mathcal{G(X, Y, Z)}$ and dimensions, Rocky Mountain J. Math., 45 (2015), 2043-2064.  doi: 10.1216/RMJ-2015-45-6-2043.  Google Scholar

[18]

Y. Zheng, Balanced pairs induce recollements, Comm. Algebra, 45 (2017), 4238-4245.  doi: 10.1080/00927872.2016.1262384.  Google Scholar

show all references

References:
[1]

A. Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stablization, Comm. Algebra, 28 (2000), 4547-4596.  doi: 10.1080/00927870008827105.  Google Scholar

[2]

D. BennisJ. R. García Rozas and L. Oyanarte, On the stability question of Gorenstein categories, Appl. Categ. Structures, 25 (2017), 907-915.  doi: 10.1007/s10485-016-9478-3.  Google Scholar

[3]

X. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra, 324 (2010), 2718-2731.  doi: 10.1016/j.jalgebra.2010.09.002.  Google Scholar

[4]

I. Emmanouil, On the finiteness of Gorenstein homological dimensions, J. Algebra, 372 (2012), 376-396.  doi: 10.1016/j.jalgebra.2012.09.018.  Google Scholar

[5]

E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. doi: 10.1515/9783110215212.  Google Scholar

[6]

S. Estrada, M. A. Pérez and H. Zhu, Balanced pairs, cotorsion triplets and quiver representations, Proc. Edinb. Math. Soc. (2), 63 (2020), 67–90. doi: 10.1017/S0013091519000270.  Google Scholar

[7]

T. V. Gedrich and K. W. Gruenberg, Complete cohomological functors on groups, Topology Appl., 25 (1987), 203-223.  doi: 10.1016/0166-8641(87)90015-0.  Google Scholar

[8]

J. Gillespie, Model structures on moules over Ding-Chen rings, Homology Homotopy Appl., 12 (2010), 61-73.  doi: 10.4310/HHA.2010.v12.n1.a6.  Google Scholar

[9]

J. Gillespie, On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mountain J. Math., 47 (2017), 2641-2673.  doi: 10.1216/RMJ-2017-47-8-2641.  Google Scholar

[10]

H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167-193.  doi: 10.1016/j.jpaa.2003.11.007.  Google Scholar

[11]

Z. Huang, Proper resolutions and Gorenstein categories, J. Algebra, 393 (2013), 142-169.  doi: 10.1016/j.jalgebra.2013.07.008.  Google Scholar

[12]

H. LiJ. Wang and Z. Huang, Applications of balanced pairs, Sci. China Math., 59 (2016), 861-874.  doi: 10.1007/s11425-015-5094-1.  Google Scholar

[13]

S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. (2), 77 (2008), 481–502. doi: 10.1112/jlms/jdm124.  Google Scholar

[14]

D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math., 96 (1977), 91-116.  doi: 10.4064/fm-96-2-91-116.  Google Scholar

[15]

X. Tang, On $F$-Gorenstein dimensions, J. Algebra Appl., 13 (2014), 14pp. doi: 10.1142/S0219498814500224.  Google Scholar

[16]

A. Xu and N. Ding, On stability of Gorenstein categories, Comm. Algebra, 41 (2013), 3793-3804.  doi: 10.1080/00927872.2012.677892.  Google Scholar

[17]

X. Yang, Gorenstein categories $\mathcal{G(X, Y, Z)}$ and dimensions, Rocky Mountain J. Math., 45 (2015), 2043-2064.  doi: 10.1216/RMJ-2015-45-6-2043.  Google Scholar

[18]

Y. Zheng, Balanced pairs induce recollements, Comm. Algebra, 45 (2017), 4238-4245.  doi: 10.1080/00927872.2016.1262384.  Google Scholar

[1]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

[2]

Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021044

[3]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[4]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[5]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021095

[6]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

[7]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[8]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[9]

Moon Duchin, Tom Needham, Thomas Weighill. The (homological) persistence of gerrymandering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021007

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[15]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[16]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[17]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[18]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[19]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[20]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

 Impact Factor: 0.263

Metrics

  • PDF downloads (83)
  • HTML views (269)
  • Cited by (0)

Other articles
by authors

[Back to Top]