March  2021, 29(1): 1625-1639. doi: 10.3934/era.2020083

Regularity criteria for weak solutions of the Magneto-micropolar equations

1. 

Department of Mathematics and Statistics, The University of New Mexico (UNM), Albuquerque, NM 87131, United States of America

2. 

Departamento de Matemática, Universidade Federal de Segipe (UFS), São Cristóvão, SE 49100-000, Brazil

* Corresponding author: Wilberclay G. Melo

Received  January 2020 Revised  April 2020 Published  August 2020

Fund Project: The first author is supported by NSF grant DMS-1148801

In this paper, we show that a weak solution $ (\mathbf{u},\mathbf{w},\mathbf{b})(\cdot,t) $ of the magneto-micropolar equations, defined in $ [0,T) $, which satisfies $ \nabla u_3, \nabla_{h} \mathbf{w}, \nabla_{h} \mathbf{b} $ $ \in L^{\frac{32}{7}}(0,T; $ $ L^2(\mathbb{R}^3)) $ or $ \partial_3 u_3, \partial_3 \mathbf{w}, \partial_3 \mathbf{b} \in L^{\infty}(0,T;L^2(\mathbb{R}^3)) $, is regular in $ \mathbb{R}^3\times(0,T) $ and can be extended as a $ C^\infty $ solution beyond $ T $.

Citation: Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083
References:
[1]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919-932.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[2]

C. Cao and J. Wu, Two regularity criteria for the $3D$ MHD equations, J. Differ. Equ., 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[3]

C. He, Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differencial Equations, 29 (2002), 13pp.  Google Scholar

[4]

X. Jia and Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal. Real World Appl., 15 (2014), 239-245.  doi: 10.1016/j.nonrwa.2013.08.002.  Google Scholar

[5]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[6]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10pp. doi: 10.1063/1.2395919.  Google Scholar

[7]

J. NeustupaA. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics, Quad. Mat., 10 (2002), 163-183.   Google Scholar

[8]

J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied Nonlinear Analysis., Kluwer/Plenum, New York, (1999), 391–402.  Google Scholar

[9]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109-125.  doi: 10.1155/S1085337599000287.  Google Scholar

[10]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., 49 (2004), 483-493.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[11]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[12]

Z. Skalák, A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, J. Math. Phys., 55 (2014), 121506, 6pp. doi: 10.1063/1.4904836.  Google Scholar

[13]

Z. Skalák, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, Nonlinear Anal., 104 (2014), 84-89.  doi: 10.1016/j.na.2014.03.018.  Google Scholar

[14]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 12pp. doi: 10.1186/1687-2770-2013-58.  Google Scholar

[15]

F. Wang, On global regularity of incompressile MHD equations in $\Bbb R^3$, J. Math. Anal. Appl., 454 (2017), 936-941.  doi: 10.1016/j.jmaa.2017.05.045.  Google Scholar

[16]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535.  doi: 10.1016/j.nonrwa.2012.07.013.  Google Scholar

[17]

Y. Wang and L. Gu, Global regularity of 3D magneto-micropolar fluid equations,, Appl. Math. Lett., 99 (2020), 105980, 9 pp. doi: 10.1016/j.aml.2019.07.011.  Google Scholar

[18]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B, 30 (2010), 1469-1480.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[19]

Z. Zhang, A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Commun. Pure Appl. Anal., 12 (2013), 117-124.  doi: 10.3934/cpaa.2013.12.117.  Google Scholar

[20]

Z. Zhang, An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component, Z. Angew. Math. Phys., 66 (2015), 1707-1715.  doi: 10.1007/s00033-015-0500-7.  Google Scholar

[21]

Z. Zhang, Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component, Nonlinear Anal., 115 (2015), 41-49.  doi: 10.1016/j.na.2014.12.003.  Google Scholar

[22]

Z. Zhang and X. Yang, A note on the regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component, J. Math. Anal. Appl., 432 (2015), 603-611.  doi: 10.1016/j.jmaa.2015.06.050.  Google Scholar

[23]

Z. Zhang and X. Yang, On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient, Nonlinear Anal., 122 (2015), 169-175.  doi: 10.1016/j.na.2015.04.005.  Google Scholar

[24]

Z. ZhangZ.-A. YaoP. LiC. Guo and M. Lu, Two new regularity criteria for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 123 (2013), 43-52.  doi: 10.1007/s10440-012-9712-4.  Google Scholar

[25]

Z. ZhangD. Zhong and L. Hu, A new regularity criterion for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 129 (2014), 175-181.  doi: 10.1007/s10440-013-9834-3.  Google Scholar

[26]

X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differential Equations, 256 (2014), 283-309.  doi: 10.1016/j.jde.2013.09.002.  Google Scholar

[27]

Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9 (2002), 563-578.  doi: 10.4310/MAA.2002.v9.n4.a5.  Google Scholar

[28]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514, 11pp. doi: 10.1063/1.3268589.  Google Scholar

[29]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

show all references

References:
[1]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919-932.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[2]

C. Cao and J. Wu, Two regularity criteria for the $3D$ MHD equations, J. Differ. Equ., 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[3]

C. He, Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differencial Equations, 29 (2002), 13pp.  Google Scholar

[4]

X. Jia and Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal. Real World Appl., 15 (2014), 239-245.  doi: 10.1016/j.nonrwa.2013.08.002.  Google Scholar

[5]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[6]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10pp. doi: 10.1063/1.2395919.  Google Scholar

[7]

J. NeustupaA. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics, Quad. Mat., 10 (2002), 163-183.   Google Scholar

[8]

J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied Nonlinear Analysis., Kluwer/Plenum, New York, (1999), 391–402.  Google Scholar

[9]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109-125.  doi: 10.1155/S1085337599000287.  Google Scholar

[10]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., 49 (2004), 483-493.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[11]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[12]

Z. Skalák, A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, J. Math. Phys., 55 (2014), 121506, 6pp. doi: 10.1063/1.4904836.  Google Scholar

[13]

Z. Skalák, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, Nonlinear Anal., 104 (2014), 84-89.  doi: 10.1016/j.na.2014.03.018.  Google Scholar

[14]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 12pp. doi: 10.1186/1687-2770-2013-58.  Google Scholar

[15]

F. Wang, On global regularity of incompressile MHD equations in $\Bbb R^3$, J. Math. Anal. Appl., 454 (2017), 936-941.  doi: 10.1016/j.jmaa.2017.05.045.  Google Scholar

[16]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535.  doi: 10.1016/j.nonrwa.2012.07.013.  Google Scholar

[17]

Y. Wang and L. Gu, Global regularity of 3D magneto-micropolar fluid equations,, Appl. Math. Lett., 99 (2020), 105980, 9 pp. doi: 10.1016/j.aml.2019.07.011.  Google Scholar

[18]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B, 30 (2010), 1469-1480.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[19]

Z. Zhang, A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Commun. Pure Appl. Anal., 12 (2013), 117-124.  doi: 10.3934/cpaa.2013.12.117.  Google Scholar

[20]

Z. Zhang, An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component, Z. Angew. Math. Phys., 66 (2015), 1707-1715.  doi: 10.1007/s00033-015-0500-7.  Google Scholar

[21]

Z. Zhang, Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component, Nonlinear Anal., 115 (2015), 41-49.  doi: 10.1016/j.na.2014.12.003.  Google Scholar

[22]

Z. Zhang and X. Yang, A note on the regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component, J. Math. Anal. Appl., 432 (2015), 603-611.  doi: 10.1016/j.jmaa.2015.06.050.  Google Scholar

[23]

Z. Zhang and X. Yang, On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient, Nonlinear Anal., 122 (2015), 169-175.  doi: 10.1016/j.na.2015.04.005.  Google Scholar

[24]

Z. ZhangZ.-A. YaoP. LiC. Guo and M. Lu, Two new regularity criteria for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 123 (2013), 43-52.  doi: 10.1007/s10440-012-9712-4.  Google Scholar

[25]

Z. ZhangD. Zhong and L. Hu, A new regularity criterion for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 129 (2014), 175-181.  doi: 10.1007/s10440-013-9834-3.  Google Scholar

[26]

X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differential Equations, 256 (2014), 283-309.  doi: 10.1016/j.jde.2013.09.002.  Google Scholar

[27]

Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9 (2002), 563-578.  doi: 10.4310/MAA.2002.v9.n4.a5.  Google Scholar

[28]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514, 11pp. doi: 10.1063/1.3268589.  Google Scholar

[29]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

[1]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[2]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[3]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[4]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[5]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[6]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[7]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[8]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[9]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[10]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[11]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[12]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[13]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[14]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[15]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[16]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[17]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[18]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[19]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[20]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

 Impact Factor: 0.263

Metrics

  • PDF downloads (120)
  • HTML views (249)
  • Cited by (0)

[Back to Top]