• Previous Article
    Combinatorics of some fifth and sixth order mock theta functions
  • ERA Home
  • This Issue
  • Next Article
    Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting
doi: 10.3934/era.2020083

Regularity criteria for weak solutions of the Magneto-micropolar equations

1. 

Department of Mathematics and Statistics, The University of New Mexico (UNM), Albuquerque, NM 87131, United States of America

2. 

Departamento de Matemática, Universidade Federal de Segipe (UFS), São Cristóvão, SE 49100-000, Brazil

* Corresponding author: Wilberclay G. Melo

Received  January 2020 Revised  April 2020 Published  August 2020

Fund Project: The first author is supported by NSF grant DMS-1148801

In this paper, we show that a weak solution $ (\mathbf{u},\mathbf{w},\mathbf{b})(\cdot,t) $ of the magneto-micropolar equations, defined in $ [0,T) $, which satisfies $ \nabla u_3, \nabla_{h} \mathbf{w}, \nabla_{h} \mathbf{b} $ $ \in L^{\frac{32}{7}}(0,T; $ $ L^2(\mathbb{R}^3)) $ or $ \partial_3 u_3, \partial_3 \mathbf{w}, \partial_3 \mathbf{b} \in L^{\infty}(0,T;L^2(\mathbb{R}^3)) $, is regular in $ \mathbb{R}^3\times(0,T) $ and can be extended as a $ C^\infty $ solution beyond $ T $.

Citation: Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, doi: 10.3934/era.2020083
References:
[1]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919-932.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[2]

C. Cao and J. Wu, Two regularity criteria for the $3D$ MHD equations, J. Differ. Equ., 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[3]

C. He, Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differencial Equations, 29 (2002), 13pp.  Google Scholar

[4]

X. Jia and Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal. Real World Appl., 15 (2014), 239-245.  doi: 10.1016/j.nonrwa.2013.08.002.  Google Scholar

[5]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[6]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10pp. doi: 10.1063/1.2395919.  Google Scholar

[7]

J. NeustupaA. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics, Quad. Mat., 10 (2002), 163-183.   Google Scholar

[8]

J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied Nonlinear Analysis., Kluwer/Plenum, New York, (1999), 391–402.  Google Scholar

[9]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109-125.  doi: 10.1155/S1085337599000287.  Google Scholar

[10]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., 49 (2004), 483-493.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[11]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[12]

Z. Skalák, A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, J. Math. Phys., 55 (2014), 121506, 6pp. doi: 10.1063/1.4904836.  Google Scholar

[13]

Z. Skalák, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, Nonlinear Anal., 104 (2014), 84-89.  doi: 10.1016/j.na.2014.03.018.  Google Scholar

[14]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 12pp. doi: 10.1186/1687-2770-2013-58.  Google Scholar

[15]

F. Wang, On global regularity of incompressile MHD equations in $\Bbb R^3$, J. Math. Anal. Appl., 454 (2017), 936-941.  doi: 10.1016/j.jmaa.2017.05.045.  Google Scholar

[16]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535.  doi: 10.1016/j.nonrwa.2012.07.013.  Google Scholar

[17]

Y. Wang and L. Gu, Global regularity of 3D magneto-micropolar fluid equations,, Appl. Math. Lett., 99 (2020), 105980, 9 pp. doi: 10.1016/j.aml.2019.07.011.  Google Scholar

[18]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B, 30 (2010), 1469-1480.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[19]

Z. Zhang, A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Commun. Pure Appl. Anal., 12 (2013), 117-124.  doi: 10.3934/cpaa.2013.12.117.  Google Scholar

[20]

Z. Zhang, An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component, Z. Angew. Math. Phys., 66 (2015), 1707-1715.  doi: 10.1007/s00033-015-0500-7.  Google Scholar

[21]

Z. Zhang, Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component, Nonlinear Anal., 115 (2015), 41-49.  doi: 10.1016/j.na.2014.12.003.  Google Scholar

[22]

Z. Zhang and X. Yang, A note on the regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component, J. Math. Anal. Appl., 432 (2015), 603-611.  doi: 10.1016/j.jmaa.2015.06.050.  Google Scholar

[23]

Z. Zhang and X. Yang, On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient, Nonlinear Anal., 122 (2015), 169-175.  doi: 10.1016/j.na.2015.04.005.  Google Scholar

[24]

Z. ZhangZ.-A. YaoP. LiC. Guo and M. Lu, Two new regularity criteria for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 123 (2013), 43-52.  doi: 10.1007/s10440-012-9712-4.  Google Scholar

[25]

Z. ZhangD. Zhong and L. Hu, A new regularity criterion for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 129 (2014), 175-181.  doi: 10.1007/s10440-013-9834-3.  Google Scholar

[26]

X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differential Equations, 256 (2014), 283-309.  doi: 10.1016/j.jde.2013.09.002.  Google Scholar

[27]

Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9 (2002), 563-578.  doi: 10.4310/MAA.2002.v9.n4.a5.  Google Scholar

[28]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514, 11pp. doi: 10.1063/1.3268589.  Google Scholar

[29]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

show all references

References:
[1]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919-932.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[2]

C. Cao and J. Wu, Two regularity criteria for the $3D$ MHD equations, J. Differ. Equ., 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[3]

C. He, Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differencial Equations, 29 (2002), 13pp.  Google Scholar

[4]

X. Jia and Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal. Real World Appl., 15 (2014), 239-245.  doi: 10.1016/j.nonrwa.2013.08.002.  Google Scholar

[5]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[6]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10pp. doi: 10.1063/1.2395919.  Google Scholar

[7]

J. NeustupaA. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics, Quad. Mat., 10 (2002), 163-183.   Google Scholar

[8]

J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied Nonlinear Analysis., Kluwer/Plenum, New York, (1999), 391–402.  Google Scholar

[9]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109-125.  doi: 10.1155/S1085337599000287.  Google Scholar

[10]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., 49 (2004), 483-493.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[11]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[12]

Z. Skalák, A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, J. Math. Phys., 55 (2014), 121506, 6pp. doi: 10.1063/1.4904836.  Google Scholar

[13]

Z. Skalák, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, Nonlinear Anal., 104 (2014), 84-89.  doi: 10.1016/j.na.2014.03.018.  Google Scholar

[14]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 12pp. doi: 10.1186/1687-2770-2013-58.  Google Scholar

[15]

F. Wang, On global regularity of incompressile MHD equations in $\Bbb R^3$, J. Math. Anal. Appl., 454 (2017), 936-941.  doi: 10.1016/j.jmaa.2017.05.045.  Google Scholar

[16]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535.  doi: 10.1016/j.nonrwa.2012.07.013.  Google Scholar

[17]

Y. Wang and L. Gu, Global regularity of 3D magneto-micropolar fluid equations,, Appl. Math. Lett., 99 (2020), 105980, 9 pp. doi: 10.1016/j.aml.2019.07.011.  Google Scholar

[18]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B, 30 (2010), 1469-1480.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[19]

Z. Zhang, A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Commun. Pure Appl. Anal., 12 (2013), 117-124.  doi: 10.3934/cpaa.2013.12.117.  Google Scholar

[20]

Z. Zhang, An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component, Z. Angew. Math. Phys., 66 (2015), 1707-1715.  doi: 10.1007/s00033-015-0500-7.  Google Scholar

[21]

Z. Zhang, Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component, Nonlinear Anal., 115 (2015), 41-49.  doi: 10.1016/j.na.2014.12.003.  Google Scholar

[22]

Z. Zhang and X. Yang, A note on the regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component, J. Math. Anal. Appl., 432 (2015), 603-611.  doi: 10.1016/j.jmaa.2015.06.050.  Google Scholar

[23]

Z. Zhang and X. Yang, On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient, Nonlinear Anal., 122 (2015), 169-175.  doi: 10.1016/j.na.2015.04.005.  Google Scholar

[24]

Z. ZhangZ.-A. YaoP. LiC. Guo and M. Lu, Two new regularity criteria for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 123 (2013), 43-52.  doi: 10.1007/s10440-012-9712-4.  Google Scholar

[25]

Z. ZhangD. Zhong and L. Hu, A new regularity criterion for the $3D$ Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 129 (2014), 175-181.  doi: 10.1007/s10440-013-9834-3.  Google Scholar

[26]

X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differential Equations, 256 (2014), 283-309.  doi: 10.1016/j.jde.2013.09.002.  Google Scholar

[27]

Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9 (2002), 563-578.  doi: 10.4310/MAA.2002.v9.n4.a5.  Google Scholar

[28]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514, 11pp. doi: 10.1063/1.3268589.  Google Scholar

[29]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

[1]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[2]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[3]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[4]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[5]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[6]

Yong Zhou, Jishan Fan. Regularity criteria of strong solutions to a problem of magneto-elastic interactions. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1697-1704. doi: 10.3934/cpaa.2010.9.1697

[7]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[8]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[9]

Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261

[10]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[11]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[12]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[13]

Bo-Qing Dong, Jiahong Wu, Xiaojing Xu, Zhuan Ye. Global regularity for the 2D micropolar equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4133-4162. doi: 10.3934/dcds.2018180

[14]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[15]

Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053

[16]

Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015

[17]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[18]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[19]

Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401

[20]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (28)
  • HTML views (50)
  • Cited by (0)

[Back to Top]