March  2021, 29(1): 1681-1689. doi: 10.3934/era.2020086

Some properties for almost cellular algebras

1. 

School of Mathematics, Hefei University of Technology, Hefei, Anhui 230009, China

2. 

Department of Mathematics, Shanghai University, Shanghai 200444, China

* Corresponding author: Nan Gao

Received  April 2020 Revised  June 2020 Published  March 2021 Early access  August 2020

Fund Project: The first author is supported by National Natural Science Foundation of China Project (No. 11901146), and the second author is supported by National Natural Science Foundation of China Project (No.11771272)

In this paper, we will investigate some properties for almost cellular algebras. We compare the almost cellular algebras with quasi-hereditary algebras, which are known to carry any homological and categorical structures. We prove that any almost cellular algebra is the iterated inflation and obtain some sufficient and necessary conditions for an almost cellular algebra $ \mathrm{A} $ to be quasi-hereditary.

Citation: Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086
References:
[1]

G. BenkartN. GuayJ. H. JungS.-J. Kang and S. Wilcox, Quantum walled Brauer-Clifford superalgebras, J. Algebra, 454 (2016), 433-474.  doi: 10.1016/j.jalgebra.2015.04.038.  Google Scholar

[2]

Z. Chang and Y. Wang, Howe duality for quantum queer superalgebras, J. Algebra, 547 (2020), 358-378.  doi: 10.1016/j.jalgebra.2019.11.023.  Google Scholar

[3]

J. Du and H. Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc., 350 (1998), 3207-3235.  doi: 10.1090/S0002-9947-98-02305-8.  Google Scholar

[4]

M. Ehrig and D. Tubbenhauer, Relative cellular algebras, Transform. Groups, (2019). doi: 10.1007/s00031-019-09544-5.  Google Scholar

[5]

F. M. Goodman, Cellularity of cyclotomic Birman-Wenzl-Murakami algebras, J. Algebra, 321 (2009), 3299-3320.  doi: 10.1016/j.jalgebra.2008.05.017.  Google Scholar

[6]

J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math., 123 (1996), 1-34.  doi: 10.1007/BF01232365.  Google Scholar

[7]

N. Guay and S. Wilcox, Almost cellular algebras, J. Pure Appl. Algebra, 219 (2015), 4105-4116.  doi: 10.1016/j.jpaa.2015.02.010.  Google Scholar

[8]

H. Rui and C. Xi, The representation theory of cyclotomic Temperley-Lieb algebras, Comment. Math. Helv., 79 (2004), 427-450.  doi: 10.1007/s00014-004-0800-6.  Google Scholar

[9]

A. S. Kleshchev, Affine highest weight categories and affine quasihereditary algebras, Proc. Lond. Math. Soc. (3), 110 (2015), 841-882.  doi: 10.1112/plms/pdv004.  Google Scholar

[10]

S. König and C. Xi, On the structure of cellular algebras, in Algebras and Modules, II, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998,365–385.  Google Scholar

[11]

S. König and C. Xi, When is a cellular algebra quasi-hereditary?, Math. Ann., 315 (1999), 281-293.  doi: 10.1007/s002080050368.  Google Scholar

[12]

S. König and C. Xi, Cellular algebras: Inflations and Morita equivalences, J. London Math. Soc. (2), 60 (1999), 700-722.  doi: 10.1112/S0024610799008212.  Google Scholar

[13]

S. König and C. Xi, Affine cellular algebras, Adv. Math., 229 (2012), 139-182.  doi: 10.1016/j.aim.2011.08.010.  Google Scholar

[14]

C. Xi, On the quasi-heredity of Birman-Wenzl algebras, Adv. Math., 154 (2000), 280-298.  doi: 10.1006/aima.2000.1919.  Google Scholar

show all references

References:
[1]

G. BenkartN. GuayJ. H. JungS.-J. Kang and S. Wilcox, Quantum walled Brauer-Clifford superalgebras, J. Algebra, 454 (2016), 433-474.  doi: 10.1016/j.jalgebra.2015.04.038.  Google Scholar

[2]

Z. Chang and Y. Wang, Howe duality for quantum queer superalgebras, J. Algebra, 547 (2020), 358-378.  doi: 10.1016/j.jalgebra.2019.11.023.  Google Scholar

[3]

J. Du and H. Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc., 350 (1998), 3207-3235.  doi: 10.1090/S0002-9947-98-02305-8.  Google Scholar

[4]

M. Ehrig and D. Tubbenhauer, Relative cellular algebras, Transform. Groups, (2019). doi: 10.1007/s00031-019-09544-5.  Google Scholar

[5]

F. M. Goodman, Cellularity of cyclotomic Birman-Wenzl-Murakami algebras, J. Algebra, 321 (2009), 3299-3320.  doi: 10.1016/j.jalgebra.2008.05.017.  Google Scholar

[6]

J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math., 123 (1996), 1-34.  doi: 10.1007/BF01232365.  Google Scholar

[7]

N. Guay and S. Wilcox, Almost cellular algebras, J. Pure Appl. Algebra, 219 (2015), 4105-4116.  doi: 10.1016/j.jpaa.2015.02.010.  Google Scholar

[8]

H. Rui and C. Xi, The representation theory of cyclotomic Temperley-Lieb algebras, Comment. Math. Helv., 79 (2004), 427-450.  doi: 10.1007/s00014-004-0800-6.  Google Scholar

[9]

A. S. Kleshchev, Affine highest weight categories and affine quasihereditary algebras, Proc. Lond. Math. Soc. (3), 110 (2015), 841-882.  doi: 10.1112/plms/pdv004.  Google Scholar

[10]

S. König and C. Xi, On the structure of cellular algebras, in Algebras and Modules, II, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998,365–385.  Google Scholar

[11]

S. König and C. Xi, When is a cellular algebra quasi-hereditary?, Math. Ann., 315 (1999), 281-293.  doi: 10.1007/s002080050368.  Google Scholar

[12]

S. König and C. Xi, Cellular algebras: Inflations and Morita equivalences, J. London Math. Soc. (2), 60 (1999), 700-722.  doi: 10.1112/S0024610799008212.  Google Scholar

[13]

S. König and C. Xi, Affine cellular algebras, Adv. Math., 229 (2012), 139-182.  doi: 10.1016/j.aim.2011.08.010.  Google Scholar

[14]

C. Xi, On the quasi-heredity of Birman-Wenzl algebras, Adv. Math., 154 (2000), 280-298.  doi: 10.1006/aima.2000.1919.  Google Scholar

[1]

Steffen Konig and Changchang Xi. Cellular algebras and quasi-hereditary algebras: a comparison. Electronic Research Announcements, 1999, 5: 71-75.

[2]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[3]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[4]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[5]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[6]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[7]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[8]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

[9]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[10]

Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013

[11]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29

[12]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[13]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[14]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[15]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

[16]

Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021

[17]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[18]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2021, 4 (1) : 45-59. doi: 10.3934/mfc.2021001

[19]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29 (4) : 2673-2685. doi: 10.3934/era.2021008

[20]

Jun Xie, Jinlong Yuan, Dongxia Wang, Weili Liu, Chongyang Liu. Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1007-1022. doi: 10.3934/jimo.2017087

2020 Impact Factor: 1.833

Article outline

[Back to Top]