doi: 10.3934/era.2020087

Global conservative solutions for a modified periodic coupled Camassa-Holm system

1. 

Personnel Department, Chongqing Normal University, Chongqing 401331, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

3. 

School of Economic Management, Chongqing Normal University, Chongqing 401331, China

* Corresponding author: The first corresponding author Baoshuai Zhang and the second corresponding author Shihang Pan

Received  April 2020 Revised  July 2020 Published  August 2020

In present paper, we deal with the behavior of a solution beyond the occurrence of wave breaking for a modified periodic Coupled Camassa-Holm system. By introducing a new set of independent and dependent variables, which resolve all singularities due to possible wave breaking, this evolution system is rewritten as a closed semilinear system. The local existence of the semilinear system is obtained as fixed points of a contractive transformation. Moreover, this formulation allows us to continue the solution after wave breaking, and gives a global conservative solution where the energy is conserved for almost all times. Returning to the original variables. We finally obtain a semigroup of global conservative solutions, which depend continuously on the initial data. Additionally, our results repair some gaps in the pervious work.

Citation: Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, doi: 10.3934/era.2020087
References:
[1]

R. BealsD. H. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.   Google Scholar

[8]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[13]

Y. Fu and C. Qu, Well-possdness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 677-702.  doi: 10.1063/1.3064810.  Google Scholar

[14]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modifed two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.  doi: 10.1007/s00208-010-0483-9.  Google Scholar

[15]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[16]

C. Guan, Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system, J. Evol. Equ., 18 (2018), 1003-1024.  doi: 10.1007/s00028-018-0430-x.  Google Scholar

[17]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Contemp. Math., 526, Amer. Math. Soc., Providence, RI, 2010,199–220.  Google Scholar

[18]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28 (2011), 623-641.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[19]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nachr., 286 (2013), 1287-1304.  doi: 10.1002/mana.201200193.  Google Scholar

[20]

C. GuanK. Yan and X. Wei, Lipschitz metric for the modified two-component Camassa-Holm system, Anal. Appl. (Singap.), 16 (2018), 159-182.  doi: 10.1142/S0219530516500226.  Google Scholar

[21]

D. D. Holm, L. Ó Naraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), 13pp. doi: 10.1103/PhysRevE.79.016601.  Google Scholar

[22]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.  doi: 10.5802/aif.2375.  Google Scholar

[23]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift F$\ddot{u}$r Naturforschung A, 61 (2006), 133–138. doi: 10.1515/zna-2006-3-404.  Google Scholar

[24]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[27]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.  doi: 10.1016/j.jde.2011.08.010.  Google Scholar

[28]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations, J. Math. Phys., 52 (2011), 29pp. doi: 10.1063/1.3600216.  Google Scholar

[29]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Difference Equ., 2010 (2010), 30pp. doi: 10.1155/2010/512812.  Google Scholar

[30]

L. Tian, W. Yan and G. Gui, On the local well posedness and blow-up solution of a coupled Camassa-Holm equations in Besov spaces, J. Math. Phys., 53 (2012), 10pp. doi: 10.1063/1.3671962.  Google Scholar

[31]

Y. Wang and Y. Song, Periodic conservative solutions for a modified two-component Camassa-Holm system with Peakons, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/437473.  Google Scholar

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[33]

S. Zhou, Non-uniform dependence and persistence properties for coupled Camassa-Holm equations, Math. Methods Appl. Sci., 40 (2017), 3718-3732.  doi: 10.1002/mma.4258.  Google Scholar

[34]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[35]

S. ZhouZ. QiaoC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933.  doi: 10.1016/j.jde.2017.03.002.  Google Scholar

show all references

References:
[1]

R. BealsD. H. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.   Google Scholar

[8]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[13]

Y. Fu and C. Qu, Well-possdness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 677-702.  doi: 10.1063/1.3064810.  Google Scholar

[14]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modifed two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.  doi: 10.1007/s00208-010-0483-9.  Google Scholar

[15]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[16]

C. Guan, Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system, J. Evol. Equ., 18 (2018), 1003-1024.  doi: 10.1007/s00028-018-0430-x.  Google Scholar

[17]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Contemp. Math., 526, Amer. Math. Soc., Providence, RI, 2010,199–220.  Google Scholar

[18]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28 (2011), 623-641.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[19]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nachr., 286 (2013), 1287-1304.  doi: 10.1002/mana.201200193.  Google Scholar

[20]

C. GuanK. Yan and X. Wei, Lipschitz metric for the modified two-component Camassa-Holm system, Anal. Appl. (Singap.), 16 (2018), 159-182.  doi: 10.1142/S0219530516500226.  Google Scholar

[21]

D. D. Holm, L. Ó Naraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), 13pp. doi: 10.1103/PhysRevE.79.016601.  Google Scholar

[22]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.  doi: 10.5802/aif.2375.  Google Scholar

[23]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift F$\ddot{u}$r Naturforschung A, 61 (2006), 133–138. doi: 10.1515/zna-2006-3-404.  Google Scholar

[24]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[27]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.  doi: 10.1016/j.jde.2011.08.010.  Google Scholar

[28]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations, J. Math. Phys., 52 (2011), 29pp. doi: 10.1063/1.3600216.  Google Scholar

[29]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Difference Equ., 2010 (2010), 30pp. doi: 10.1155/2010/512812.  Google Scholar

[30]

L. Tian, W. Yan and G. Gui, On the local well posedness and blow-up solution of a coupled Camassa-Holm equations in Besov spaces, J. Math. Phys., 53 (2012), 10pp. doi: 10.1063/1.3671962.  Google Scholar

[31]

Y. Wang and Y. Song, Periodic conservative solutions for a modified two-component Camassa-Holm system with Peakons, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/437473.  Google Scholar

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[33]

S. Zhou, Non-uniform dependence and persistence properties for coupled Camassa-Holm equations, Math. Methods Appl. Sci., 40 (2017), 3718-3732.  doi: 10.1002/mma.4258.  Google Scholar

[34]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[35]

S. ZhouZ. QiaoC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933.  doi: 10.1016/j.jde.2017.03.002.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

 Impact Factor: 0.263

Metrics

  • PDF downloads (41)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]