doi: 10.3934/era.2020087

Global conservative solutions for a modified periodic coupled Camassa-Holm system

1. 

Personnel Department, Chongqing Normal University, Chongqing 401331, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

3. 

School of Economic Management, Chongqing Normal University, Chongqing 401331, China

* Corresponding author: The first corresponding author Baoshuai Zhang and the second corresponding author Shihang Pan

Received  April 2020 Revised  July 2020 Published  August 2020

In present paper, we deal with the behavior of a solution beyond the occurrence of wave breaking for a modified periodic Coupled Camassa-Holm system. By introducing a new set of independent and dependent variables, which resolve all singularities due to possible wave breaking, this evolution system is rewritten as a closed semilinear system. The local existence of the semilinear system is obtained as fixed points of a contractive transformation. Moreover, this formulation allows us to continue the solution after wave breaking, and gives a global conservative solution where the energy is conserved for almost all times. Returning to the original variables. We finally obtain a semigroup of global conservative solutions, which depend continuously on the initial data. Additionally, our results repair some gaps in the pervious work.

Citation: Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, doi: 10.3934/era.2020087
References:
[1]

R. BealsD. H. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.   Google Scholar

[8]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[13]

Y. Fu and C. Qu, Well-possdness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 677-702.  doi: 10.1063/1.3064810.  Google Scholar

[14]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modifed two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.  doi: 10.1007/s00208-010-0483-9.  Google Scholar

[15]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[16]

C. Guan, Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system, J. Evol. Equ., 18 (2018), 1003-1024.  doi: 10.1007/s00028-018-0430-x.  Google Scholar

[17]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Contemp. Math., 526, Amer. Math. Soc., Providence, RI, 2010,199–220.  Google Scholar

[18]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28 (2011), 623-641.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[19]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nachr., 286 (2013), 1287-1304.  doi: 10.1002/mana.201200193.  Google Scholar

[20]

C. GuanK. Yan and X. Wei, Lipschitz metric for the modified two-component Camassa-Holm system, Anal. Appl. (Singap.), 16 (2018), 159-182.  doi: 10.1142/S0219530516500226.  Google Scholar

[21]

D. D. Holm, L. Ó Naraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), 13pp. doi: 10.1103/PhysRevE.79.016601.  Google Scholar

[22]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.  doi: 10.5802/aif.2375.  Google Scholar

[23]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift F$\ddot{u}$r Naturforschung A, 61 (2006), 133–138. doi: 10.1515/zna-2006-3-404.  Google Scholar

[24]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[27]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.  doi: 10.1016/j.jde.2011.08.010.  Google Scholar

[28]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations, J. Math. Phys., 52 (2011), 29pp. doi: 10.1063/1.3600216.  Google Scholar

[29]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Difference Equ., 2010 (2010), 30pp. doi: 10.1155/2010/512812.  Google Scholar

[30]

L. Tian, W. Yan and G. Gui, On the local well posedness and blow-up solution of a coupled Camassa-Holm equations in Besov spaces, J. Math. Phys., 53 (2012), 10pp. doi: 10.1063/1.3671962.  Google Scholar

[31]

Y. Wang and Y. Song, Periodic conservative solutions for a modified two-component Camassa-Holm system with Peakons, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/437473.  Google Scholar

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[33]

S. Zhou, Non-uniform dependence and persistence properties for coupled Camassa-Holm equations, Math. Methods Appl. Sci., 40 (2017), 3718-3732.  doi: 10.1002/mma.4258.  Google Scholar

[34]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[35]

S. ZhouZ. QiaoC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933.  doi: 10.1016/j.jde.2017.03.002.  Google Scholar

show all references

References:
[1]

R. BealsD. H. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.   Google Scholar

[8]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[13]

Y. Fu and C. Qu, Well-possdness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 677-702.  doi: 10.1063/1.3064810.  Google Scholar

[14]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modifed two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.  doi: 10.1007/s00208-010-0483-9.  Google Scholar

[15]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[16]

C. Guan, Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system, J. Evol. Equ., 18 (2018), 1003-1024.  doi: 10.1007/s00028-018-0430-x.  Google Scholar

[17]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Contemp. Math., 526, Amer. Math. Soc., Providence, RI, 2010,199–220.  Google Scholar

[18]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28 (2011), 623-641.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[19]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nachr., 286 (2013), 1287-1304.  doi: 10.1002/mana.201200193.  Google Scholar

[20]

C. GuanK. Yan and X. Wei, Lipschitz metric for the modified two-component Camassa-Holm system, Anal. Appl. (Singap.), 16 (2018), 159-182.  doi: 10.1142/S0219530516500226.  Google Scholar

[21]

D. D. Holm, L. Ó Naraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), 13pp. doi: 10.1103/PhysRevE.79.016601.  Google Scholar

[22]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.  doi: 10.5802/aif.2375.  Google Scholar

[23]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift F$\ddot{u}$r Naturforschung A, 61 (2006), 133–138. doi: 10.1515/zna-2006-3-404.  Google Scholar

[24]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[27]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.  doi: 10.1016/j.jde.2011.08.010.  Google Scholar

[28]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations, J. Math. Phys., 52 (2011), 29pp. doi: 10.1063/1.3600216.  Google Scholar

[29]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Difference Equ., 2010 (2010), 30pp. doi: 10.1155/2010/512812.  Google Scholar

[30]

L. Tian, W. Yan and G. Gui, On the local well posedness and blow-up solution of a coupled Camassa-Holm equations in Besov spaces, J. Math. Phys., 53 (2012), 10pp. doi: 10.1063/1.3671962.  Google Scholar

[31]

Y. Wang and Y. Song, Periodic conservative solutions for a modified two-component Camassa-Holm system with Peakons, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/437473.  Google Scholar

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[33]

S. Zhou, Non-uniform dependence and persistence properties for coupled Camassa-Holm equations, Math. Methods Appl. Sci., 40 (2017), 3718-3732.  doi: 10.1002/mma.4258.  Google Scholar

[34]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[35]

S. ZhouZ. QiaoC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933.  doi: 10.1016/j.jde.2017.03.002.  Google Scholar

[1]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[2]

Li Yang, Chunlai Mu, Shouming Zhou, Xinyu Tu. The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27: 37-67. doi: 10.3934/era.2019009

[3]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[4]

Guangying Lv, Mingxin Wang. Some remarks for a modified periodic Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1161-1180. doi: 10.3934/dcds.2011.30.1161

[5]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[6]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[7]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[8]

Shaojie Yang, Tianzhou Xu. Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 329-341. doi: 10.3934/dcds.2018016

[9]

Ying Zhang. Wave breaking and global existence for the periodic rotation-Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2243-2257. doi: 10.3934/dcds.2017097

[10]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[11]

Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090

[12]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[13]

Hideshi Yamane. Local and global analyticity for $\mu$-Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4307-4340. doi: 10.3934/dcds.2020182

[14]

Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160

[15]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[16]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[17]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[18]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[19]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[20]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (26)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]