March  2021, 29(1): 1691-1708. doi: 10.3934/era.2020087

Global conservative solutions for a modified periodic coupled Camassa-Holm system

1. 

Personnel Department, Chongqing Normal University, Chongqing 401331, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

3. 

School of Economic Management, Chongqing Normal University, Chongqing 401331, China

* Corresponding author: The first corresponding author Baoshuai Zhang and the second corresponding author Shihang Pan

Received  April 2020 Revised  July 2020 Published  August 2020

In present paper, we deal with the behavior of a solution beyond the occurrence of wave breaking for a modified periodic Coupled Camassa-Holm system. By introducing a new set of independent and dependent variables, which resolve all singularities due to possible wave breaking, this evolution system is rewritten as a closed semilinear system. The local existence of the semilinear system is obtained as fixed points of a contractive transformation. Moreover, this formulation allows us to continue the solution after wave breaking, and gives a global conservative solution where the energy is conserved for almost all times. Returning to the original variables. We finally obtain a semigroup of global conservative solutions, which depend continuously on the initial data. Additionally, our results repair some gaps in the pervious work.

Citation: Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087
References:
[1]

R. BealsD. H. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.   Google Scholar

[8]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[13]

Y. Fu and C. Qu, Well-possdness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 677-702.  doi: 10.1063/1.3064810.  Google Scholar

[14]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modifed two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.  doi: 10.1007/s00208-010-0483-9.  Google Scholar

[15]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[16]

C. Guan, Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system, J. Evol. Equ., 18 (2018), 1003-1024.  doi: 10.1007/s00028-018-0430-x.  Google Scholar

[17]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Contemp. Math., 526, Amer. Math. Soc., Providence, RI, 2010,199–220.  Google Scholar

[18]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28 (2011), 623-641.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[19]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nachr., 286 (2013), 1287-1304.  doi: 10.1002/mana.201200193.  Google Scholar

[20]

C. GuanK. Yan and X. Wei, Lipschitz metric for the modified two-component Camassa-Holm system, Anal. Appl. (Singap.), 16 (2018), 159-182.  doi: 10.1142/S0219530516500226.  Google Scholar

[21]

D. D. Holm, L. Ó Naraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), 13pp. doi: 10.1103/PhysRevE.79.016601.  Google Scholar

[22]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.  doi: 10.5802/aif.2375.  Google Scholar

[23]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift F$\ddot{u}$r Naturforschung A, 61 (2006), 133–138. doi: 10.1515/zna-2006-3-404.  Google Scholar

[24]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[27]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.  doi: 10.1016/j.jde.2011.08.010.  Google Scholar

[28]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations, J. Math. Phys., 52 (2011), 29pp. doi: 10.1063/1.3600216.  Google Scholar

[29]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Difference Equ., 2010 (2010), 30pp. doi: 10.1155/2010/512812.  Google Scholar

[30]

L. Tian, W. Yan and G. Gui, On the local well posedness and blow-up solution of a coupled Camassa-Holm equations in Besov spaces, J. Math. Phys., 53 (2012), 10pp. doi: 10.1063/1.3671962.  Google Scholar

[31]

Y. Wang and Y. Song, Periodic conservative solutions for a modified two-component Camassa-Holm system with Peakons, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/437473.  Google Scholar

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[33]

S. Zhou, Non-uniform dependence and persistence properties for coupled Camassa-Holm equations, Math. Methods Appl. Sci., 40 (2017), 3718-3732.  doi: 10.1002/mma.4258.  Google Scholar

[34]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[35]

S. ZhouZ. QiaoC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933.  doi: 10.1016/j.jde.2017.03.002.  Google Scholar

show all references

References:
[1]

R. BealsD. H. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.   Google Scholar

[8]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[13]

Y. Fu and C. Qu, Well-possdness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 677-702.  doi: 10.1063/1.3064810.  Google Scholar

[14]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modifed two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.  doi: 10.1007/s00208-010-0483-9.  Google Scholar

[15]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[16]

C. Guan, Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system, J. Evol. Equ., 18 (2018), 1003-1024.  doi: 10.1007/s00028-018-0430-x.  Google Scholar

[17]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Contemp. Math., 526, Amer. Math. Soc., Providence, RI, 2010,199–220.  Google Scholar

[18]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28 (2011), 623-641.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[19]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nachr., 286 (2013), 1287-1304.  doi: 10.1002/mana.201200193.  Google Scholar

[20]

C. GuanK. Yan and X. Wei, Lipschitz metric for the modified two-component Camassa-Holm system, Anal. Appl. (Singap.), 16 (2018), 159-182.  doi: 10.1142/S0219530516500226.  Google Scholar

[21]

D. D. Holm, L. Ó Naraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), 13pp. doi: 10.1103/PhysRevE.79.016601.  Google Scholar

[22]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.  doi: 10.5802/aif.2375.  Google Scholar

[23]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift F$\ddot{u}$r Naturforschung A, 61 (2006), 133–138. doi: 10.1515/zna-2006-3-404.  Google Scholar

[24]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[27]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.  doi: 10.1016/j.jde.2011.08.010.  Google Scholar

[28]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations, J. Math. Phys., 52 (2011), 29pp. doi: 10.1063/1.3600216.  Google Scholar

[29]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Difference Equ., 2010 (2010), 30pp. doi: 10.1155/2010/512812.  Google Scholar

[30]

L. Tian, W. Yan and G. Gui, On the local well posedness and blow-up solution of a coupled Camassa-Holm equations in Besov spaces, J. Math. Phys., 53 (2012), 10pp. doi: 10.1063/1.3671962.  Google Scholar

[31]

Y. Wang and Y. Song, Periodic conservative solutions for a modified two-component Camassa-Holm system with Peakons, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/437473.  Google Scholar

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[33]

S. Zhou, Non-uniform dependence and persistence properties for coupled Camassa-Holm equations, Math. Methods Appl. Sci., 40 (2017), 3718-3732.  doi: 10.1002/mma.4258.  Google Scholar

[34]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[35]

S. ZhouZ. QiaoC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933.  doi: 10.1016/j.jde.2017.03.002.  Google Scholar

[1]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[2]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[3]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[4]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[5]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[6]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[7]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[8]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[9]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[10]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[11]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[12]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[13]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[14]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[15]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[16]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[17]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[20]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

 Impact Factor: 0.263

Metrics

  • PDF downloads (94)
  • HTML views (225)
  • Cited by (0)

Other articles
by authors

[Back to Top]