March  2021, 29(1): 1709-1734. doi: 10.3934/era.2020088

On a final value problem for a nonlinear fractional pseudo-parabolic equation

1. 

Division of Applied Mathematics, Thu Dau Mot University, Thu Dau Mot City, Vietnam

2. 

Department of Mathematics, University of Mazandaran, Babolsar, Iran, Department of Mathematical Sciences, University of South Africa, UNISA0003, South Africa

3. 

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan

4. 

Department of Mathematics, FSTE Moulay Ismail University of Meknes, BP 509 Boutalamine, Errachidia 52000, Morocco

5. 

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam

6. 

Department of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam

* Corresponding author: Nguyen Huy Tuan

Received  May 2020 Revised  July 2020 Published  August 2020

In this paper, we investigate a final boundary value problem for a class of fractional with parameter $ \beta $ pseudo-parabolic partial differential equations with nonlinear reaction term. For $ 0<\beta < 1, $ the solution is regularity-loss, we establish the well-posedness of solutions. In the case that $ \beta >1 $, it has a feature of regularity-gain. Then, the instability of a mild solution is proved. We introduce two methods to regularize the problem. With the help of the modified Lavrentiev regularization method and Fourier truncated regularization method, we propose the regularized solutions in the cases of globally or locally Lipschitzian source term. Moreover, the error estimates is established.

Citation: Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088
References:
[1]

S. Antontsev and S. Shmarev, On a class of fully nonlinear parabolic equations, Adv. Nonlinear Anal., 8 (2019), 79-100.  doi: 10.1515/anona-2016-0055.  Google Scholar

[2]

V. V. AuM. Kirane and N. H. Tuan, Determination of initial data for a reaction-diffusion system with variable coefficients, Discrete Contin. Dyn. Syst., 39 (2019), 771-801.  doi: 10.3934/dcds.2019032.  Google Scholar

[3]

V. V. Au and N. H. Tuan, Identification of the initial condition in backward problem with nonlinear diffusion and reaction, J. Math. Anal. Appl., 452 (2017), 176-187.  doi: 10.1016/j.jmaa.2017.02.055.  Google Scholar

[4]

Y. Cao and C. Liu, Initial boundary value problem for a mixed pseudo- parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electronic J. Differential Equations, 2018 (2018), 1-19.   Google Scholar

[5]

Y. CaoJ. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568-4590.  doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[6]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[7]

H. Chen and H. Xu, Global existence and blow-up in finite time for a class of finitely degenerate semilinear pseudo-parabolic equations, Acta Math. Sin. (Engl. Ser.), 35 (2019), 1143-1162.  doi: 10.1007/s10114-019-8037-x.  Google Scholar

[8]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[9]

H. DiY. Shang and X. Zhang, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 781-801.  doi: 10.3934/dcdsb.2016.21.781.  Google Scholar

[10]

H. Ding and J. Zhou, Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478 (2019), 393-420.  doi: 10.1016/j.jmaa.2019.05.018.  Google Scholar

[11]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Ration. Mech. Anal., 49 (1972/73), 57-78.  doi: 10.1007/BF00281474.  Google Scholar

[12]

Y. HeH. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[13]

F. A. Høeg and P. Lindqvist, Regularity of solutions of the parabolic normalized $p$-Laplace equation, Adv. Nonlinear Anal., 9 (2020), 7-15.  doi: 10.1515/anona-2018-0091.  Google Scholar

[14]

L. JinL. Li and S. Fang, The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation, Comput. Math. Appl., 73 (2017), 2221-2232.  doi: 10.1016/j.camwa.2017.03.005.  Google Scholar

[15]

J. Johnsen, Well-posed final value problems and Duhamel's formula for coercive Lax-Milgram operators, Electronic Res. Arch., 27 (2019), 20-36.  doi: 10.3934/era.2019008.  Google Scholar

[16]

M. V. Klibanov, Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs, Inverse Problems, 31 (2015), 20pp. doi: 10.1088/0266-5611/31/12/125007.  Google Scholar

[17]

W. LianJ. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[18]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[19]

Y. Lu and L. Fei, Bounds for blow-up time in a semilinear pseudo-parabolic equation with nonlocal source, J. Inequal. Appl., 2016 (2016), 11pp. doi: 10.1186/s13660-016-1171-4.  Google Scholar

[20]

H. T. NguyenV. A. Khoa and V. V. Au, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60-85.  doi: 10.1137/18M1174064.  Google Scholar

[21]

L. ShenS. Wang and Y. Wang, The well-posedness and regularity of a rotating blades equation, Electron. Res. Arch., 28 (2020), 691-719.  doi: 10.3934/era.2020036.  Google Scholar

[22]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[23]

F. SunL. Liu and Y. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl. Anal., 98 (2019), 735-755.  doi: 10.1080/00036811.2017.1400536.  Google Scholar

[24]

T. W. Ting, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan, 21 (1969), 440-453.  doi: 10.2969/jmsj/02130440.  Google Scholar

[25]

N. H. Tuan, V. V. Au, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 40pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar

[26]

N. H. TuanM. KiraneB. Samet and V. V. Au, A new fourier truncated regularization method for semilinear backward parabolic problems, Acta Appl. Math., 148 (2017), 143-155.  doi: 10.1007/s10440-016-0082-1.  Google Scholar

[27]

N. H. Tuan and D. D. Trong, A nonlinear parabolic equation backward in time: Regularization with new error estimates, Nonlinear Anal., 73 (2010), 1842-1852.  doi: 10.1016/j.na.2010.05.019.  Google Scholar

[28]

R. Wang, Y. Li and B. Wang, Bi-spatial pullback attractors of fractional nonclassical diffusion equations on unbounded domains with $(p, q)$-growth nonlinearities, Appl. Math. Optim., (2020). doi: 10.1007/s00245-019-09650-6.  Google Scholar

[29]

R. WangY. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

[30]

R. WangL. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb R^N$, Nonlinearity, 32 (2019), 4524-4556.  doi: 10.1088/1361-6544/ab32d7.  Google Scholar

[31]

R. XuW. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.  doi: 10.1007/s11425-017-9280-x.  Google Scholar

[32]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[33]

R. XuX. Wang and Y. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176-181.  doi: 10.1016/j.aml.2018.03.033.  Google Scholar

[34]

R. XuM. ZhangS. ChenY. Yang and J. Shen, The initial-boundary value problems for a class of sixth order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.  doi: 10.3934/dcds.2017244.  Google Scholar

[35]

H. ZhangJ. Lu and Q. Hu, Exponential growth of solution of a strongly nonlinear generalized Boussinesq equation, Comput. Math. Appl., 68 (2014), 1787-1793.  doi: 10.1016/j.camwa.2014.10.012.  Google Scholar

[36]

X. ZhuF. Li and Y. Li, Global solutions and blow up solutions to a class of pseudo-parabolic equations with nonlocal term, Appl. Math. Comput., 329 (2018), 38-51.  doi: 10.1016/j.amc.2018.02.003.  Google Scholar

[37]

X. ZhuF. LiZ. Liang and T. Rong, A sufficient condition for blowup of solutions to a class of pseudo-parabolic equations with a nonlocal term, Math. Methods Appl. Sci., 39 (2016), 3591-3606.  doi: 10.1002/mma.3803.  Google Scholar

show all references

References:
[1]

S. Antontsev and S. Shmarev, On a class of fully nonlinear parabolic equations, Adv. Nonlinear Anal., 8 (2019), 79-100.  doi: 10.1515/anona-2016-0055.  Google Scholar

[2]

V. V. AuM. Kirane and N. H. Tuan, Determination of initial data for a reaction-diffusion system with variable coefficients, Discrete Contin. Dyn. Syst., 39 (2019), 771-801.  doi: 10.3934/dcds.2019032.  Google Scholar

[3]

V. V. Au and N. H. Tuan, Identification of the initial condition in backward problem with nonlinear diffusion and reaction, J. Math. Anal. Appl., 452 (2017), 176-187.  doi: 10.1016/j.jmaa.2017.02.055.  Google Scholar

[4]

Y. Cao and C. Liu, Initial boundary value problem for a mixed pseudo- parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electronic J. Differential Equations, 2018 (2018), 1-19.   Google Scholar

[5]

Y. CaoJ. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568-4590.  doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[6]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[7]

H. Chen and H. Xu, Global existence and blow-up in finite time for a class of finitely degenerate semilinear pseudo-parabolic equations, Acta Math. Sin. (Engl. Ser.), 35 (2019), 1143-1162.  doi: 10.1007/s10114-019-8037-x.  Google Scholar

[8]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[9]

H. DiY. Shang and X. Zhang, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 781-801.  doi: 10.3934/dcdsb.2016.21.781.  Google Scholar

[10]

H. Ding and J. Zhou, Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478 (2019), 393-420.  doi: 10.1016/j.jmaa.2019.05.018.  Google Scholar

[11]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Ration. Mech. Anal., 49 (1972/73), 57-78.  doi: 10.1007/BF00281474.  Google Scholar

[12]

Y. HeH. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[13]

F. A. Høeg and P. Lindqvist, Regularity of solutions of the parabolic normalized $p$-Laplace equation, Adv. Nonlinear Anal., 9 (2020), 7-15.  doi: 10.1515/anona-2018-0091.  Google Scholar

[14]

L. JinL. Li and S. Fang, The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation, Comput. Math. Appl., 73 (2017), 2221-2232.  doi: 10.1016/j.camwa.2017.03.005.  Google Scholar

[15]

J. Johnsen, Well-posed final value problems and Duhamel's formula for coercive Lax-Milgram operators, Electronic Res. Arch., 27 (2019), 20-36.  doi: 10.3934/era.2019008.  Google Scholar

[16]

M. V. Klibanov, Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs, Inverse Problems, 31 (2015), 20pp. doi: 10.1088/0266-5611/31/12/125007.  Google Scholar

[17]

W. LianJ. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[18]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[19]

Y. Lu and L. Fei, Bounds for blow-up time in a semilinear pseudo-parabolic equation with nonlocal source, J. Inequal. Appl., 2016 (2016), 11pp. doi: 10.1186/s13660-016-1171-4.  Google Scholar

[20]

H. T. NguyenV. A. Khoa and V. V. Au, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60-85.  doi: 10.1137/18M1174064.  Google Scholar

[21]

L. ShenS. Wang and Y. Wang, The well-posedness and regularity of a rotating blades equation, Electron. Res. Arch., 28 (2020), 691-719.  doi: 10.3934/era.2020036.  Google Scholar

[22]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[23]

F. SunL. Liu and Y. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl. Anal., 98 (2019), 735-755.  doi: 10.1080/00036811.2017.1400536.  Google Scholar

[24]

T. W. Ting, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan, 21 (1969), 440-453.  doi: 10.2969/jmsj/02130440.  Google Scholar

[25]

N. H. Tuan, V. V. Au, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 40pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar

[26]

N. H. TuanM. KiraneB. Samet and V. V. Au, A new fourier truncated regularization method for semilinear backward parabolic problems, Acta Appl. Math., 148 (2017), 143-155.  doi: 10.1007/s10440-016-0082-1.  Google Scholar

[27]

N. H. Tuan and D. D. Trong, A nonlinear parabolic equation backward in time: Regularization with new error estimates, Nonlinear Anal., 73 (2010), 1842-1852.  doi: 10.1016/j.na.2010.05.019.  Google Scholar

[28]

R. Wang, Y. Li and B. Wang, Bi-spatial pullback attractors of fractional nonclassical diffusion equations on unbounded domains with $(p, q)$-growth nonlinearities, Appl. Math. Optim., (2020). doi: 10.1007/s00245-019-09650-6.  Google Scholar

[29]

R. WangY. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

[30]

R. WangL. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb R^N$, Nonlinearity, 32 (2019), 4524-4556.  doi: 10.1088/1361-6544/ab32d7.  Google Scholar

[31]

R. XuW. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.  doi: 10.1007/s11425-017-9280-x.  Google Scholar

[32]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[33]

R. XuX. Wang and Y. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176-181.  doi: 10.1016/j.aml.2018.03.033.  Google Scholar

[34]

R. XuM. ZhangS. ChenY. Yang and J. Shen, The initial-boundary value problems for a class of sixth order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.  doi: 10.3934/dcds.2017244.  Google Scholar

[35]

H. ZhangJ. Lu and Q. Hu, Exponential growth of solution of a strongly nonlinear generalized Boussinesq equation, Comput. Math. Appl., 68 (2014), 1787-1793.  doi: 10.1016/j.camwa.2014.10.012.  Google Scholar

[36]

X. ZhuF. Li and Y. Li, Global solutions and blow up solutions to a class of pseudo-parabolic equations with nonlocal term, Appl. Math. Comput., 329 (2018), 38-51.  doi: 10.1016/j.amc.2018.02.003.  Google Scholar

[37]

X. ZhuF. LiZ. Liang and T. Rong, A sufficient condition for blowup of solutions to a class of pseudo-parabolic equations with a nonlocal term, Math. Methods Appl. Sci., 39 (2016), 3591-3606.  doi: 10.1002/mma.3803.  Google Scholar

[1]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[2]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[3]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[4]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[5]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[6]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[7]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[8]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004

[12]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[13]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[15]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[19]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[20]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

 Impact Factor: 0.263

Article outline

[Back to Top]